Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Сериальные издания
  • Системный анализ и прикладная информатика
  • 2019
  • № 1
  • View Item
  •   Repository BNTU
  • Сериальные издания
  • Системный анализ и прикладная информатика
  • 2019
  • № 1
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Filter Kalman for solving the problem of coordinates UAV

Thumbnail
Authors
Arefyev, N. N.
Date
2019
Publisher
БНТУ
Another Title
Фильтр Калмана для оптимального получения координат беспилотных летательных аппаратов
Bibliographic entry
Arefyev, N. N. Filter Kalman for solving the problem of coordinates UAV = Фильтр Калмана для оптимального получения координат беспилотных летательных аппаратов / N. N. Arefyev // Системный анализ и прикладная информатика. – 2019. – № 1. – С. 26-34.
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used in military and scientific research. Some miniaturized UAVs rely entirely on the global positioning system (GPS) for navigation. GPS is vulnerable to accidental or deliberate interference that can cause it to fail. It is not unusual, even in a benign environment, for a GPS outage to occur for periods of seconds to minutes. For UAVs relying solely on GPS for navigation such an event can be catastrophic. This article proposes an extended Kalman filter approach to estimate the location of a UAV when its GPS connection is lost, using inter-UAV distance measurements Increasing the accuracy of coordinate’s determination is one of the most crucial tasks of the modern UAV navigation. This task can be solved by using different variants of integration of navigation systems. One of the modern variants of integration is the combination of GPS/GLONASS-navigation with the extended Kalman filter, which estimates the accuracy recursively with the help of incomplete and noisy measurements. Currently different variations of extended Kalman filter exist and are under development, which include various number of variable states [1]. This article will show the utilization efficiency of extended Kalman filter in modern developments.
Abstract in another language
В статье даётся классификация основных компонентов систем беспилотного летательного аппарата (БЛА), даётся обоснование фильтру Калмана и необходимость использования его для точного получения координат беспилотных летательных аппаратов. Беспилотные летательные аппараты (БПЛА) все чаще используются в военных и научных исследований. Некоторые миниатюрные БПЛА полагаются полностью на глобальной системе позиционирования (GPS). GPS уязвим для случайного или преднамеренного вмешательства что может привести к его сбою. Для БПЛА, полагающихся исключительно на GPS для навигации такое событие может быть катастрофическим. В настоящем документе предлагается расширенный подход фильтра Калмана для оценки местоположения БПЛА, когда его GPS-соединение потеряно. Приводится альтернативное использование частичного фильтра. В конце делается вывод о необходимых направлениях дальнейших научных исследований.
URI
https://rep.bntu.by/handle/data/54664
View/Open
Статья (1.109Mb)
Collections
  • № 1[9]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us