Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Достижения науки и техники Китая и Беларуси в области здравоохранения и жизнедеятельности человека
  • Материалы конференции по статьям
  • View Item
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Достижения науки и техники Китая и Беларуси в области здравоохранения и жизнедеятельности человека
  • Материалы конференции по статьям
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive de-noising in arterial pulse wave based on lifting scheme discrete wavelet

Thumbnail
Authors
Yao, Y
Xu, LS
Feng, C
Zhou, SR
Zhang, YH
Zhao, Yue
Shi, C
Date
2015
Publisher
БНТУ
Bibliographic entry
Adaptive de-noising in arterial pulse wave based on lifting scheme discrete wavelet / Y Yao [et al.] // Достижения науки и техники Китая и Беларуси в области здравоохранения и жизнедеятельности человека : сборник материалов Белорусско-Китайского медицинского форума, 25-27 ноября 2015 г. – Минск : БНТУ, 2015. – С. 18-24.
Abstract
Pulse wave denoising is an essential procedure in pulse wave analysis. Lifting wavelet denoising speeds up the typical wavelet denoising, and is thus of great interest. Three groups (five each) of data sets (radial pulse waves recorded from healthy subjects and sphygmogram and plethysmogram obtained from the Multi-parameter Intelligent Monitoring in Intensive Care database) were enrolled for this study. The predictor of the lifting scheme were adaptively calculated using the Least Mean Square (LMS) algorithm. Comparison analysis were applied with the typical wavelet denoising and adaptive denoising using typical wavelet. The adaptive denoising algorithm using lifting scheme can effectively eliminate the noise in pulse wave signal (MSE is 0.0469, 0.0256, 0.0147, 0.0088, 0.0051 and 0.0035, respectively when the SNR of the pulse signal equals 5, 10, ···, 30db). As the SNR gets higher, the performance of the adaptive denoising algorithm using lifting scheme gets closer to those of the typical wavelet denoising and adaptive denoising algorithm using typical wavelet (MSE of the lifting scheme denoising algorithm and the other two typical algorithms, 0.0035, 0.0036 and 0.0084, respectively, with SNR of the raw pulse signal 30db).
URI
https://rep.bntu.by/handle/data/40595
View/Open
18-24.pdf (1.317Mb)
Collections
  • Материалы конференции по статьям[21]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us