Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Внеуниверситетские публикации ученых БНТУ
  • Публикации в изданиях других стран
  • View Item
  •   Repository BNTU
  • Внеуниверситетские публикации ученых БНТУ
  • Публикации в изданиях других стран
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Competition between electron transfer and energy migration in self-assembled porphyrin triads

Thumbnail
DOI
10.1016/s0928-4931(01)00376-9
Authors
Zenkevich, E. I.
Willert, A.
Bachilo, S. M.
Rempel, U.
Kilin, D. S.
Shulga, A. M.
Borczyskowski, C. von
Date
2001
Bibliographic entry
Competition between electron transfer and energy migration in self-assembled porphyrin triads / E. I. Zenkevich [et al.] // Materials Science and Engineering C. – 2001. – Vol. 18, № 1-2. – P. 99-111.
Abstract
The photoinduced electron transfer (ET) and the energy migration (EM) processes have been studied in liquid solutions and polymeric (PMMA) films for the triads consisting of the Zn-octaethylporphyrin chemical dimer (the energy and electron donor, D) and dipyridyl substituted tetrapyrrole extra-ligands (porphyrins, chlorin, tetrahydroporphyrin) as the acceptors, A. On the basis of the time correlated single photon counting technique and femtosecond pump-probe spectroscopy, it has been shown that D fluorescence quenching with time constant ranging from 1.7 to 10 ps is due to competing EM and ET processes from the dimer to A's. In addition, the fluorescence decay time shortening (by ∼1.3–1.6 times in toluene at 293 K) is observed for electron accepting extra-ligands in the triads. The acceptor fluorescence quenching is hard dependent on the mutual spatial arrangement of the triad subunits, but becomes stronger upon the solvent polarity increase (addition of acetone to toluene solutions) as well as the temperature lowering (from 278 to 221 K). The possible reasons and mechanisms of the non-radiative deactivation of locally excited S₁-states in the triads are discussed taking into account a close lying charge-separated state. The obtained experimental data are analyzed using the reduced density matrix formalism in the frame of Haken–Strobl–Reineker approach. This model includes EM and ET processes as well as the dephasing of coherence between the excited electronic states of the triad. © 2001 Elsevier Science B.V. All rights reserved.
URI
https://rep.bntu.by/handle/data/30167
View/Open
Статья (256.5Kb)
Collections
  • Публикации в изданиях других стран[1154]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us