Сравнительный анализ безэталонных мер оценки качества цифровых изображений
Another Title
Comparative analysis of no-reference quality measures for digital images
Bibliographic entry
Старовойтов, В. В., Старовойтов Ф. В. Сравнительный анализ безэталонных мер оценки качества цифровых изображений = Comparative analysis of no-reference quality measures for digital images / В. В. Старовойтов, Ф. В. Старовойтов // Системный анализ и прикладная информатика. - 2017. – № 1. - С. 24 - 32.
Abstract
В статье описываются результаты сравнительного анализа 34 функций, опубликованных в научной литературе и использующихся для оценки качества изображений при отсутствии эталона. В англоязычной литературе они называются no-reference (NR) measure или мерами NR-типа. Первая статья, использующая термин no-reference, была опубликована в 2000 году и ежегодно растет число публикаций о новых мерах NR-типа. Тем не менее сравнительных исследований таких мер практически не проводилось. Наличие NR-мер очень актуально для, а) оценки качества сделанных фотографий, б) оценки результатов преобразований, ориентированных на улучшение изображений, и выбор параметров этих преобразований (яркостные изменения, сжатие динамического диапазона яркости, преобразование цветного в полутон и другие). Базы тестовых изображений, используемые для исследования без эталонных мер качества (TID2013 и другие), содержат по 4, 5 вариантов изображений определенного типа искажений параметры которых не описаны. Поэтому разработано шесть типов экспериментов с целью анализа корреляции вычисляемых количественных оценок с визуальными оценками качества тестируемых изображений. Четыре из них являются принципиально новыми: сравнение изображений после гамма-коррекции и изменения контраста с разными параметрами, а также сравнение отретушированных изображений и фотографий, сделанных с разным фокусным расстоянием. Экспериментально показано, что ни одна из исследуемых мер оценки качества изображения не является универсальной, а вычисленная оценка не может быть преобразована в качественную шкалу без учета факторов, влияющих на искажение качества изображения. Большинство исследованных мер вычисляет локальные оценки в малых окрестностях, а их среднее арифметическое является оценкой качества всего изображения. Если на изображении доминируют большие области однородной яркости, меры такого типа могут дать неверные оценки качества, не совпадающие с визуальными оценками.
Abstract in another language
This paper presents results of a comparative analysis of 34 measures published in the scientific literature and used for evaluation of the image quality without a reference image. In English literature, they are called no-reference (NR) measure or measures NR-type. The first article, the term no-reference, was published in 2000 and each year a growing number of publications on new measures NR-type. However, comparative studies of such measures is not practically conducted. Such measures are very important for a) just made photo quality evaluation, b) assessment of image enhancement transformations and selection of their parameters (such as contrast and brightness adjustments, tone-mapping, decolorization and others). Publicly available image quality databases used for study no-reference quality measures (TID2013, etc.), contain 4-5 variants of images distorted by predefined transformations with unknown parameters. We presented six types of experiments to analyze correlation of the computed numerical quality values with visual estimates of the test images quality. Four of the experiments are new: comparison of images after gamma-correction and contrast enhancement with different parameters, as well as analysis of the retouched images and photos taken with different focal length. It was shown experimentally that no one of the known no-reference quality assessment measure is universal, and the calculated value cannot be converted to a quality scale, excluding factors influencing the distortion of the image. Most of the studied measures calculates local estimates in small neighborhoods, and their arithmetic mean is the quality index of the image. If the image contains large areas of uniform brightness, the measures of this type can give incorrect quality assessment, which will not correlate with the visual assessments.
View/ Open
Collections
- №1[10]