Neural network technology for managing big data in energy systems
Bibliographic entry
Savkova, Е. N. Neural network technology for managing big data in energy systems = / Е. N. Savkova, M. Dong // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 72-73.
Abstract
Neural network technology is becoming a core tool for managing big data in energy systems,significantly improving the accuracy and efficiency of load forecasting,state estimation,and fault detection.Compared to traditional methods,architectures such as Physics-Informed Neural Networks and LSTM perform better in terms of prediction error,robustness,and real-time capability.These technologies have reduced operational costs and delivered rapid returns in multiple real-world cases.In the future,federated learning,quantum computing,and edge intelligence will further drive energy systems toward adaptive,low-latency,and distributed intelligent operations.
