Show simple item record

dc.contributor.authorSavkova, Е. N.ru
dc.contributor.authorDong, M.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-14T07:23:21Z
dc.date.available2026-01-14T07:23:21Z
dc.date.issued2025
dc.identifier.citationSavkova, Е. N. Neural network technology for managing big data in energy systems = / Е. N. Savkova, M. Dong // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 72-73.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/162739
dc.description.abstractNeural network technology is becoming a core tool for managing big data in energy systems,significantly improving the accuracy and efficiency of load forecasting,state estimation,and fault detection.Compared to traditional methods,architectures such as Physics-Informed Neural Networks and LSTM perform better in terms of prediction error,robustness,and real-time capability.These technologies have reduced operational costs and delivered rapid returns in multiple real-world cases.In the future,federated learning,quantum computing,and edge intelligence will further drive energy systems toward adaptive,low-latency,and distributed intelligent operations.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleNeural network technology for managing big data in energy systemsru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record