| dc.contributor.author | Savkova, Е. N. | ru |
| dc.contributor.author | Dong, M. | ru |
| dc.coverage.spatial | Минск | ru |
| dc.date.accessioned | 2026-01-14T07:23:21Z | |
| dc.date.available | 2026-01-14T07:23:21Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Savkova, Е. N. Neural network technology for managing big data in energy systems = / Е. N. Savkova, M. Dong // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 72-73. | ru |
| dc.identifier.uri | https://rep.bntu.by/handle/data/162739 | |
| dc.description.abstract | Neural network technology is becoming a core tool for managing big data in energy systems,significantly improving the accuracy and efficiency of load forecasting,state estimation,and fault detection.Compared to traditional methods,architectures such as Physics-Informed Neural Networks and LSTM perform better in terms of prediction error,robustness,and real-time capability.These technologies have reduced operational costs and delivered rapid returns in multiple real-world cases.In the future,federated learning,quantum computing,and edge intelligence will further drive energy systems toward adaptive,low-latency,and distributed intelligent operations. | ru |
| dc.language.iso | en | ru |
| dc.publisher | БНТУ | ru |
| dc.title | Neural network technology for managing big data in energy systems | ru |
| dc.type | Working Paper | ru |