Evaluation-oriented data-generating process for performance time series: the perturbation observation decoupling principle
Bibliographic entry
Song, Q. Evaluation-oriented data-generating process for performance time series: the perturbation observation decoupling principle / Q. Song // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 96-98.
Abstract
This work proposes the Perturbation-Observation Decoupling Principle: by decoupling structured perturbations – defined with precise temporalboundaries and semantic labels – from performance observation paths at the physical, logical, or resource level during the data generation process (DGP), our approach prevents signal contamination and ensures causal traceability. It establishes a controllable, reproducible paradigm for generating performance time series (PTS) with embedded ground-truth annotations, enabling a shift from passive observation to active intervention and providing a causal foundation for high-recall, interpretable, and action-oriented algorithm evaluation.
