Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting email spam or ham using logistic regression and stremlit depolyment

Thumbnail
Authors
Pramod, S. A.
Dipak, P. P.
Date
2025
Publisher
БНТУ
Bibliographic entry
Pramod, S. A. Detecting email spam or ham using logistic regression and stremlit depolyment = / S. A. Pramod, P. P. Dr. Dipak // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 457-459.
Abstract
The use of email as a key form of communication has led to an increase in uninvited and potentially hazardous spam messages. This study presents a comprehensive approach to classifying emails as either spam or ham using logistic regression. Leveraging a dataset obtained from Kaggle, we performed extensive exploratory data analysis (EDA) with visualizations such as pie charts, bar plots, and confusion matrices. Using performance parameters like accuracy, precision, recall, and F1 score, the model's potential for prediction was assessed. In order to facilitate smooth interaction for real-time email classification, Streamlit was also used to develop an intuitive application. This work demonstrates the utility of logistic regression in tackling the spam problem while paving the way for further exploration using advanced machine learning models.
URI
https://rep.bntu.by/handle/data/162724
View/Open
457-459.pdf (691.0Kb)
Collections
  • Материалы конференции по статьям[252]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us