Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI and computer vision-based pest and disease detection for greenhouse crops in Zimbabwe

Thumbnail
Authors
Panashe, G. M.
Doubt, S.
Musaidzi, H.
Makusha, D. T.
Date
2025
Publisher
БНТУ
Bibliographic entry
AI and computer vision-based pest and disease detection for greenhouse crops in Zimbabwe = / G. M. Panashe, S. Doubt, H. Musaidzi, D. T. Makusha // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 436-437.
Abstract
Pests and diseases remain a major constraint to agricultural productivity in Zimbabwe, causing significant losses and limiting farmers’ income. In greenhouse farming, early detection of infestations is critical to ensure healthy crops and reduce pesticide overuse. This study presents a computer-vision system powered by artificial intelligence (AI) for early identification of common pests and diseases in greenhouse crops. A convolutional neural network (CNN) trained on a regionally curated dataset of healthy and diseased plant images automatically classifies visual symptoms from digital photographs. The system is implemented through a MATLAB desktop application, enabling offline classification for users with limited internet access. The CNN achieved 83 % training accuracy and 82 % validation accuracy, with high precision and recall across multiple crop categories. Testing confirmed reliable detection of leaf curl, septoria leaf spot, and related infections in tomatoes and peppers. This work demonstrates that locally trained deep-learning models can effectively support greenhouse farmers in Zimbabwe, enhancing early response and minimizing losses due to pest and disease outbreaks.
URI
https://rep.bntu.by/handle/data/162710
View/Open
436-437.pdf (314.9Kb)
Collections
  • Материалы конференции по статьям[252]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us