Advanced motion planning for real-time and scalable autonomous systems in high-dimensional environments
Bibliographic entry
Tamasha, C. Advanced motion planning for real-time and scalable autonomous systems in high-dimensional environments = / C. Tamasha, D. Rudo // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 430-432.
Abstract
Enabling safe, scalable, and intelligent autonomy in complex environments remains central to nextgeneration robotics. Autonomous vehicles, surgical robots, and manipulators demand real-time motion planning resilient to high-dimensional complexity. Traditional algorithms struggle under kinodynamic constraints, motivating hybrid learning–planning architectures. Integrating deep reinforcement learning with sampling-based planners enhances exploration efficiency, while hierarchical control improves task decomposition. A checkpoint-based rewarding mechanism addresses internal reward contradictions, and Q-value–guided exploration ensures adaptive sampling. Anchored in Trustworthy AI and Operational Design Domain principles, this hybrid approach outperforms trial-and-error baselines and advances robust, explainable, and resource-efficient autonomy across dynamic, safety-critical robotic applications.
