Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced motion planning for real-time and scalable autonomous systems in high-dimensional environments

Thumbnail
Authors
Tamasha, C.
Rudo, D.
Date
2025
Publisher
БНТУ
Bibliographic entry
Tamasha, C. Advanced motion planning for real-time and scalable autonomous systems in high-dimensional environments = / C. Tamasha, D. Rudo // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 430-432.
Abstract
Enabling safe, scalable, and intelligent autonomy in complex environments remains central to nextgeneration robotics. Autonomous vehicles, surgical robots, and manipulators demand real-time motion planning resilient to high-dimensional complexity. Traditional algorithms struggle under kinodynamic constraints, motivating hybrid learning–planning architectures. Integrating deep reinforcement learning with sampling-based planners enhances exploration efficiency, while hierarchical control improves task decomposition. A checkpoint-based rewarding mechanism addresses internal reward contradictions, and Q-value–guided exploration ensures adaptive sampling. Anchored in Trustworthy AI and Operational Design Domain principles, this hybrid approach outperforms trial-and-error baselines and advances robust, explainable, and resource-efficient autonomy across dynamic, safety-critical robotic applications.
URI
https://rep.bntu.by/handle/data/162706
View/Open
430-432.pdf (311.3Kb)
Collections
  • Материалы конференции по статьям[252]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us