Белорусский национальный технический университет
Repository of the Belarusian National Technical University
ISSN: 2310-7405
Repository of the Belarusian National Technical University
View Item 
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
  •   Repository BNTU
  • Материалы конференций и семинаров
  • Международные и республиканские конференции
  • Приборостроение
  • Приборостроение-2025
  • Материалы конференции по статьям
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced sensor-based system for soil nutrient analysis and AI-driven crop recommendation

Thumbnail
Authors
Dipak, P. P.
Tushar, H. J.
Sandip, R. S.
Date
2025
Publisher
БНТУ
Bibliographic entry
Dr Dipak, P. P. Advanced sensor-based system for soil nutrient analysis and AI-driven crop recommendation = / P. P. Dr Dipak, H. J. Tushar, Sandip R. S. // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 7-8.
Abstract
This research presents an automated soil analysis system integrating NPK sensors with machine learning for precision agriculture. The framework employs Arduino UNO microcontroller and ESP8266 Wi-Fi module to capture real-time nitrogen, phosphorus, and potassium levels from soil samples. Collected data transmits to cloud infrastructure where trained algorithms process nutrient concentrations and generate crop cultivation recommendations. An OLED interface provides immediate feedback to agricultural practitioners. Testing demonstrates reliable nutrient quantification and appropriate crop suggestions compared to traditional laboratory methods. The solution offers advantages including immediate results, reduced operational costs, and simplified operation. This technology supports sustainable farming through optimized resource allocation. Future developments will incorporate meteorological data and additional soil characteristics to enhance predictive capabilities and recommendation precision.
URI
https://rep.bntu.by/handle/data/162667
View/Open
7-8.pdf (329.8Kb)
Collections
  • Материалы конференции по статьям[252]
Show full item record
CORE Recommender

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us
 

Browse

All of Repository BNTUCommunities & CollectionsAuthorsTitlesBy Issue DatePublisherBy Submit DateTypeThis CollectionAuthorsTitlesBy Issue DatePublisherBy Submit DateType

My Account

LoginRegister

Belarusian National Technical University | Science Library | About Repository | Размещение в Репозитории | Contact Us
Яндекс.МетрикаIP Geolocation by DB-IP
Science Library | About Repository | Размещение в Репозитории | Contact Us