Show simple item record

dc.contributor.authorSiqi, Lien
dc.coverage.spatialМинскru
dc.date.accessioned2018-03-21T13:16:52Z
dc.date.available2018-03-21T13:16:52Z
dc.date.issued2017
dc.identifier.citationSiqi, Li. Computer-aided diagnosis for pathology image / Li Siqi // Новые горизонты – 2017 : сборник материалов Белорусско-Китайского молодежного инновационного форума, 2-3 ноября 2017 г. : в 2 т. – Минск : БНТУ, 2017. – Т. 1. – С. 9-11.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/38958
dc.description.abstractAccurate analysis for pathology image is of great importance in medical diagnosis and treatment. Specifically, nucleus detection is considered as an important prerequisite for this purpose. With the rapid development of computer-aided diagnosis, several computer-aided diagnosis (CAD) models using machine learning and deep learning have been developed fo accurate automatic nucleus detection. In this paper, we propose a nucleus detection method using two layers’ sparse autoencoder (SAE) and transfer learning. First, 26832 image patches of breast cancer are utilized to train the SAE in an unsupervised learning method, which could be regarded as the feature extraction process. Then, the softmax classifier are used to classify that whether an image patch contains a complete nucleus or not. Finally, following transfer learning and sliding window techniques, we use the trained SAE and softmax models for nucleus detection on liver cancer pathology image. Experiments demonstrate that our proposed method could achieve the satisfactory detection results.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleComputer-aided diagnosis for pathology imageru
dc.typeWorking Paperru
dc.relation.bookНовые горизонты - 2017ru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record