Show simple item record

dc.contributor.authorZhao, S.ru
dc.contributor.authorZhang, C.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:15Z
dc.date.available2026-01-23T05:56:15Z
dc.date.issued2025
dc.identifier.citationZhao, S. 基于感受野注意力优化的SAR 船舶检测方法研究 / S. Zhao, C. Zhang // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 117-118.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163070
dc.description.abstractThis paper proposes a SAR ship detection method based on a receptive field attention mechanism. By integrating Receptive Field Attention Convolution (RFAConv) into the YOLOv11 model, the method dynamically generates attention weights to enhance the perception of local feature significance. Experimental results demonstrate that the improved model significantly enhances detection accuracy on ship datasets, particularly excelling in the mAP50-95 metric, while maintaining low computational overhead.ru
dc.language.isoruru
dc.publisherБНТУru
dc.title基于感受野注意力优化的SAR 船舶检测方法研究ru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record