Show simple item record

dc.contributor.authorZhang, X.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:14Z
dc.date.available2026-01-23T05:56:14Z
dc.date.issued2025
dc.identifier.citationZhang, X. Research on emg artifact suppression method for EEG signals based on 1D-CNN-LSTM hybrid model / X. Zhang // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 111-113.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163067
dc.description.abstractElectroencephalography (EEG), as the core physiological signal reflecting the electrical activity of brain neurons, is susceptible to muscle activity interference during acquisition, generating Electromyography (EMG) artefacts that prove difficult to separate using conventional methods. Therefore, this paper proposes a hybrid 1D-CNN + LSTM framework incorporated with a mixed loss function. This approach enables precise suppression of EMG artefacts while retaining valid EEG components, realizing efficient and distortion-free purification of EEG signals.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleResearch on emg artifact suppression method for EEG signals based on 1D-CNN-LSTM hybrid modelru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record