Show simple item record

dc.contributor.authorYu, L.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:14Z
dc.date.available2026-01-23T05:56:14Z
dc.date.issued2025
dc.identifier.citationYu, L. Impact of data augmentation strategies on deep learning-based image classification / L. Yu // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 108-109.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163065
dc.description.abstractThis paper explores how data augmentation techniques influence the performance and generalization of deep learning-based image classifiers. Augmentation is essential for enhancing robustness and accuracy, especially when training data are limited or imbalanced. The study discusses various augmentation methods, from basic geometric transformations to advanced approaches such as Mixup, CutMix, and GAN-generated samples. The analysis highlights the improvement these methods bring to image classification tasks and their role in preventing overfitting.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleImpact of data augmentation strategies on deep learning-based image classificationru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record