Show simple item record

dc.contributor.authorXia, E.ru
dc.contributor.authorFan, L.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:14Z
dc.date.available2026-01-23T05:56:14Z
dc.date.issued2025
dc.identifier.citationXia, E. Network traffic analysis based on deep learning algorithms / E. Xia, L. Fan // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 106-107.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163064
dc.description.abstractThis paper introduces a novel hierarchical model integrating 2D-CNN and Bi-LSTM-Attention for improved network traffic analysis. We standardized the USTC-TFC-2016 and CICDDoS 2019 datasets into 40 × 40 grayscale images, extracting spatial features with 2D-CNN and temporal dependencies with Bi-LSTMAttention. Our model demonstrated superior accuracy and robustness over conventional approaches, with capabilities for real-time malicious traffic detection.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleNetwork traffic analysis based on deep learning algorithmsru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record