| dc.contributor.author | Xia, E. | ru |
| dc.contributor.author | Fan, L. | ru |
| dc.coverage.spatial | Минск | ru |
| dc.date.accessioned | 2026-01-23T05:56:14Z | |
| dc.date.available | 2026-01-23T05:56:14Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Xia, E. Network traffic analysis based on deep learning algorithms / E. Xia, L. Fan // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 106-107. | ru |
| dc.identifier.uri | https://rep.bntu.by/handle/data/163064 | |
| dc.description.abstract | This paper introduces a novel hierarchical model integrating 2D-CNN and Bi-LSTM-Attention for improved network traffic analysis. We standardized the USTC-TFC-2016 and CICDDoS 2019 datasets into 40 × 40 grayscale images, extracting spatial features with 2D-CNN and temporal dependencies with Bi-LSTMAttention. Our model demonstrated superior accuracy and robustness over conventional approaches, with capabilities for real-time malicious traffic detection. | ru |
| dc.language.iso | en | ru |
| dc.publisher | БНТУ | ru |
| dc.title | Network traffic analysis based on deep learning algorithms | ru |
| dc.type | Working Paper | ru |