| dc.contributor.author | Song, Q. | ru |
| dc.coverage.spatial | Минск | ru |
| dc.date.accessioned | 2026-01-23T05:56:13Z | |
| dc.date.available | 2026-01-23T05:56:13Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Song, Q. The evolution of performance time series analyzability from application to interpretable evaluation / Q. Song // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 98-100. | ru |
| dc.identifier.uri | https://rep.bntu.by/handle/data/163059 | |
| dc.description.abstract | Performance Time Series (PTS) are widely used to monitor system health, yet their analytical value is often limited by a lack of structured event records. This work argues that PTS analyzability is not an inherent property, but a progressive, human-curated and context-dependent property determined by the presence and richness of causal event annotations. We propose a three-level framework – Application Level, Quantifiable Evaluation Level, and Interpretable Evaluation Level – that characterizes the evolution of PTS analyzability from passive data streams into active evaluation infrastructure. By reframing PTS as experimental platforms rather than mere analysis objects, we establish a principled foundation for trustworthy and interpretable algorithm validation. | ru |
| dc.language.iso | en | ru |
| dc.publisher | БНТУ | ru |
| dc.title | The evolution of performance time series analyzability from application to interpretable evaluation | ru |
| dc.type | Working Paper | ru |