Show simple item record

dc.contributor.authorHao, L.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:12Z
dc.date.available2026-01-23T05:56:12Z
dc.date.issued2025
dc.identifier.citationHao, L. Nonparametric walking model based on relationship between plantar insole sensor signal time-spatial features / L. Hao // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 78-79.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163046
dc.description.abstractThis work contrasts traditional parametric walking models, which handle simple gait well but fail on nonlinear or disease-affected patterns, with a Non-Parametric Walking Model (NPWM) built from plantar insole time–spatial features. The Neurological Disease Detection Feature Mining Method (NDFMM) identifies goal-oriented walking patterns through sorted-metrics–based selection. Combining NPWM and NDFMM provides a robust approach for modeling complex gait dynamics and enhancing disease-related classification.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleNonparametric walking model based on relationship between plantar insole sensor signal time-spatial featuresru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record