| dc.contributor.author | Hao, L. | ru |
| dc.coverage.spatial | Минск | ru |
| dc.date.accessioned | 2026-01-23T05:56:12Z | |
| dc.date.available | 2026-01-23T05:56:12Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Hao, L. Nonparametric walking model based on relationship between plantar insole sensor signal time-spatial features / L. Hao // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 78-79. | ru |
| dc.identifier.uri | https://rep.bntu.by/handle/data/163046 | |
| dc.description.abstract | This work contrasts traditional parametric walking models, which handle simple gait well but fail on nonlinear or disease-affected patterns, with a Non-Parametric Walking Model (NPWM) built from plantar insole time–spatial features. The Neurological Disease Detection Feature Mining Method (NDFMM) identifies goal-oriented walking patterns through sorted-metrics–based selection. Combining NPWM and NDFMM provides a robust approach for modeling complex gait dynamics and enhancing disease-related classification. | ru |
| dc.language.iso | en | ru |
| dc.publisher | БНТУ | ru |
| dc.title | Nonparametric walking model based on relationship between plantar insole sensor signal time-spatial features | ru |
| dc.type | Working Paper | ru |