Show simple item record

dc.contributor.authorChen, Y.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-23T05:56:11Z
dc.date.available2026-01-23T05:56:11Z
dc.date.issued2025
dc.identifier.citationChen, Y. Image enhancement techniques for satellite and UAV image matching / Y. Chen // Новые горизонты – 2025 : сборник материалов XII Белорусско-китайского молодежного инновационного форума, 27–28 ноября 2025 года / Белорусский национальный технический университет. – Минск : БНТУ, 2025. – Т. 1. – С. 62-63.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/163037
dc.description.abstractImage enhancement plays a critical role in improving the accuracy and robustness of image matching between satellite and Unmanned Aerial Vehicle (UAV) imagery. Variations in resolution, illumination, and geometry between these two imaging modalities often hinder direct comparison. This paper reviews key traditional and deep learning–based enhancement algorithms used to address these challenges. It highlights how such methods improve feature extraction and matching accuracy and provides a concise overview of state-of-the-art approaches in this domain.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleImage enhancement techniques for satellite and UAV image matchingru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record