Show simple item record

dc.contributor.authorTendai, P. N.ru
dc.contributor.authorKudzai, B. C.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-14T07:23:17Z
dc.date.available2026-01-14T07:23:17Z
dc.date.issued2025
dc.identifier.citationTendai, P. N. Driver distraction detection system using visual sensors based on deep learning = / P. N. Tendai, B. C. Kudzai // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 443-445.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/162716
dc.description.abstractDrivers often engage in secondary activities that divert attention from driving, increasing accident risks. This study uses deep learning, specifically Squeeze Net 1.1, to detect visual and cognitive distractions through camera-based monitoring of the driver’s face, hands, and body. Comparative analysis of algorithms shows ResNet offers the best accuracy. The system effectively identifies distracted driving, contributing to safer roads and advancing intelligent driver assistance technologies.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleDriver distraction detection system using visual sensors based on deep learningru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record