Show simple item record

dc.contributor.authorSean, T.ru
dc.contributor.authorMuchenje, D.ru
dc.contributor.authorSimango. D. T.ru
dc.contributor.authorMakusha. B. S.ru
dc.coverage.spatialМинскru
dc.date.accessioned2026-01-14T07:23:15Z
dc.date.available2026-01-14T07:23:15Z
dc.date.issued2025
dc.identifier.citationAutonomous assistive exoskeleton control system integrating EEG/EMG intent decoding = / T. Sean, D. Muchenje, D. T. Simango, B. S. Makusha // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 432-433.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/162707
dc.description.abstractMobility impairments caused by spinal cord injuries, stroke, and degenerative disorders limit independence for millions worldwide. This study presents a low-cost lower-limb exoskeleton that decodes user intention in real time using electroencephalographic (EEG) and electromyographic (EMG) signals. The system employs a PIC16F877A microcontroller executing adaptive impedance control and gait-phase recognition, with a Kalman filter combining inertial, torque, and bio-signal inputs to generate smooth hip–knee trajectories. Bench-top and hardware-in-the-loop simulations classified four locomotor commands – stand, sit, walk, stop – with 96 % accuracy and a maximum 85 ms latency. The lightweight 3.8 kg aluminium–carbon frame, powered by backdrivable BLDC motors, reproduced natural hip excursions of 15–35° at 1.2 s cadence. The results validate the feasibility of embedding edge AI for assistive gait restoration in resource-constrained clinical contexts.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleAutonomous assistive exoskeleton control system integrating EEG/EMG intent decodingru
dc.typeWorking Paperru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record