| dc.contributor.author | Kudzanayi, C. | ru |
| dc.contributor.author | Mutenhabundo, W. | ru |
| dc.contributor.author | Rindai, M. | ru |
| dc.coverage.spatial | Минск | ru |
| dc.date.accessioned | 2026-01-14T07:23:14Z | |
| dc.date.available | 2026-01-14T07:23:14Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Kudzanayi, C. AI-driven instrumentation for predictive maintenance of solar pv and thermal collectors in smart grids = / C. Kudzanayi, W. Mutenhabundo, M. Rindai // Приборостроение-2025 : материалы 18-й Международной научно-технической конференции, 13–15 ноября 2025 года Минск, Республика Беларусь / редкол.: А. И. Свистун (пред.), О. К. Гусев, Р. И. Воробей [и др.]. – Минск : БНТУ, 2025. – С. 421-422. | ru |
| dc.identifier.uri | https://rep.bntu.by/handle/data/162700 | |
| dc.description.abstract | The growing deployment of solar photovoltaic (PV) and thermal collector systems requires intelligent maintenance frameworks to improve reliability and reduce operational costs. This study presents a hybrid Aidriven predictive maintenance system integrating Long Short-Term Memory (LSTM) networks for temporal forecasting and Random Forest (RF) classifiers for fault detection within an IoT-based multi-sensor framework. Using MQTT-enabled cloud-edge communication, the system achieved a forecasting RMSE of 0.98 °C and 27.9 W, an F1-score of 0.91, and a 37 % reduction in unscheduled downtime. The model improved energy yield by 5.6 % and shortened the return-on-investment period to 22 months, validating the economic and technical benefits of Aibased predictive maintenance. | ru |
| dc.language.iso | en | ru |
| dc.publisher | БНТУ | ru |
| dc.title | AI-driven instrumentation for predictive maintenance of solar pv and thermal collectors in smart grids | ru |
| dc.type | Working Paper | ru |