Show simple item record

dc.contributor.authorZhang, Shoujingru
dc.contributor.authorHe, Runhairu
dc.contributor.authorLi, Fushengru
dc.contributor.authorZhang, Zhenxingru
dc.coverage.spatialМинскru
dc.date.accessioned2025-04-21T07:31:25Z
dc.date.available2025-04-21T07:31:25Z
dc.date.issued2024
dc.identifier.citationVegetation index methods: a comparative analysis of NDVI, EVI and SAVI / Shoujing Zhang, Runhai He, Fusheng Li, Zhenxing Zhang // Новые горизонты – 2024 : сборник материалов XI Белорусско-китайского молодежного инновационного форума, 21-22 ноября 2024 года / Белорусский национальный технический университет. – Минск : БНТУ, 2024. – Т. 1. – С. 87-88.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/154848
dc.description.abstractThis study emphasizes the importance of monitoring and predicting plant functional traits for ecological and agricultural research, particularly in the context of climate change. Hyperspectral remote sensing is a key tool for studying vegetation health and ecosystem dynamics due to its efficiency and wide coverage. Common modeling methods include vegetation indices, partial least squares regression, and process-based models. This paper compares the advantages and disadvantages of three vegetation indices: NDVI, EVI, and SAVI.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleVegetation index methods: a comparative analysis of NDVI, EVI and SAVIru
dc.typeArticleru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record