Show simple item record

dc.contributor.authorHe, Runhairu
dc.coverage.spatialМинскru
dc.date.accessioned2025-04-21T07:31:20Z
dc.date.available2025-04-21T07:31:20Z
dc.date.issued2024
dc.identifier.citationHe, Runhai. Comparative study of boston house price prediction models based on gan data augmentation / Runhai He // Новые горизонты – 2024 : сборник материалов XI Белорусско-китайского молодежного инновационного форума, 21-22 ноября 2024 года / Белорусский национальный технический университет. – Минск : БНТУ, 2024. – Т. 1. – С. 70-72.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/154840
dc.description.abstractThis study aims to compare the performance of four machine learning models in the Boston housing price prediction task, and explore whether GAN data augmentation can improve the prediction performance of the model. Experimental results indicate that on the original data set, The CatBoost model demonstrated superior predictive performance, with an MSE of 4.76, RMSE of 2.18, MAE of 1.65, and R² of 0.94. However, no significant performance improvement was observed when GAN data augmentation was applied to these models.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleComparative study of boston house price prediction models based on gan data augmentationru
dc.typeArticleru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record