Show simple item record

dc.contributor.authorHe, Runhairu
dc.contributor.authorLi, Fushengru
dc.contributor.authorZhang, Zhenxingru
dc.contributor.authorZhang, Shoujingru
dc.coverage.spatialМинскru
dc.date.accessioned2025-04-21T07:31:20Z
dc.date.available2025-04-21T07:31:20Z
dc.date.issued2024
dc.identifier.citationEnhancing heart disease prediction using gaussian process regression and sequential analysis for optimal sampling efficiency / Runhai He, Fusheng Li, Zhenxing Zhang, Shoujing Zhang // Новые горизонты – 2024 : сборник материалов XI Белорусско-китайского молодежного инновационного форума, 21-22 ноября 2024 года / Белорусский национальный технический университет. – Минск : БНТУ, 2024. – Т. 1. – С. 67-70.ru
dc.identifier.urihttps://rep.bntu.by/handle/data/154839
dc.description.abstractHeart disease poses a significant risk to global health, and accurate prediction of this risk is critical to public health. This study leverages the Kaggle heart disease dataset, employs machine learning models to predict heart disease risk, and introduces sequence analysis to minimize sample collection while maintaining accuracy. Of the four models, linear regression, Bayesian regression, random forest, and Gaussian process regression, Gaussian process regression proved to be the most accurate. Combined with sequential analysis, we found appropriate sampling stops to reduce acquisition costs while maintaining prediction accuracy.ru
dc.language.isoenru
dc.publisherБНТУru
dc.titleEnhancing heart disease prediction using gaussian process regression and sequential analysis for optimal sampling efficiencyru
dc.typeArticleru


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record