Коллекции данного раздела

Последние добавленные документы

  • Напряженно-деформированное состояние линейного участка нефтепровода с учетом коррозионных дефектов и ремонтных работ 

    Щербаков, С. С.; Козик, А. Н.; Насань, О. А. (БНТУ, 2017)
    Для участка трубопровода с одним из наиболее крупных внутренних дефектов проведено компьютерное моделирование трехмерного напряженно-деформированного состояния в статической упругой постановке. Рассматривались распределения компонент тензоров напряжений для секции трубы с коррозионным дефектом и для случая ее ремонта обжимной приварной муфтой. Показано значительное уменьшение ...
    2017-03-02
  • Статычны i дынамiчны аналiз качэння кола па плоскасцi з переменным каэфiцыентам трэння слiзгання 

    Русан, С. I.; Стэцкi, Я. С. (БНТУ, 2017)
    Изложена методика решения нетиповой прикладной задачи качения ведущего колеса по плоскости с переменным коэффициентом трения. Получены формулы для вычисления сил сцепления, необходимых для качения без скольжения.
    2017-02-22
  • Моделирование накопления повреждаемости (износа) применительно к режущему инструменту сельскохозяйственного комбайна 

    Насань, О. А. (БНТУ, 2017)
    Проведено конечно-элементное моделирование динамического напряженно-деформированного состояния режущего инструмента сельскохозяйственного комбайна. Для режущей области ножа разработана методика оценки объемной повреждаемости. Проведен сравнительный анализ влияния комбинаций материалов (стали и Моники) ножа и противорежущего бруса на величины износа режущей кромки ножа. Для анализа ...
    2017-02-22
  • Дорожные испытания несущих систем и конструкций шасси и трансмиссий грузовых автомобилей 

    Капуста, П. П.; Шпаковский, И. Т.; Ярошевич, А. П. (БНТУ, 2017)
    Рассмотрена задача дорожных испытаний несущих систем, конструкций шасси и трансмиссий автомобилей МЗКТ.
    2017-02-22
  • Применение технологии CUDA для распараллеливания гранично-элементных вычислений 

    Щербаков, С. С.; Сергеев, В. Э. (БНТУ, 2017)
    Методом граничных элементов решена задача о нагружении поверхности полуплоскости потенциалом с круговым распределением. Распределение потенциала в полуплоскости, матрица взаимовлияний для определения значений фиктивного потенциала и решение системы линейных алгебраических уравнений матричным способом были получены на основе последовательных и параллельных вычислений с использованием ...
    2017-02-22
  • О разложении функций в гиперболический ряд 

    Акимов, В. А.; Гончарова, С. В.; Хотеев, А. Л. (БНТУ, 2017)
    В данной работе показан алгоритм нахождения коэффициентов разложения функции в гиперболический ряд на конечном симметрическом отрезке, операторным методом, с использованием в нем понятий теории функций комплексного переменного. Достоверность полученного результата гарантируется корректностью математических выкладок, и его совпадением с известными результатами при переходе к ...
    2017-02-22
  • Исследование на прочность мехатронных систем в пищевой промышленности 

    Гончаров, М. В.; Куликова, М. Г.; Егоров, А. Н. (БНТУ, 2017)
    Рассматривается задача о расчете диаметра направляющих стержней фильтр-пресса под действием распределенной нагрузки и сосредоточенной силы.
    2017-02-22
  • Методика калибровки диодных и термоэлектрических первичных измерительных преобразований мощности 

    Николаенко, В. Л.; Николаенко, О. С.; Пачинин, В. И. (БНТУ, 2017)
    В статье рассмотрена методика калибровки диодных и термоэлектрических первичных измерительных преобразователей мощности.
    2017-02-22
  • Численное моделирование повреждаемости силовой системы 

    Мармыш, Д. Е. (БНТУ, 2017)
    В работе рассмотрено гранично-элементное моделирование напряжённого состояния применительно к системе ролик/вал. Предварительно были получены аналитические решения для равномерно распределённой по граничному элементу нагрузки, позволяющие определить все компоненты тензора напряжений в любой точке пространства. Были получены характеристики повреждаемости системы и проведено их ...
    2017-02-21
  • Решение обратной задачи кинематики манипулятора 

    Анципорович, П. П.; Акулич, В. К.; Дубовская, Е. М. (БНТУ, 2017)
    Обратная задача кинематики манипулятора состоит в определении таких законов изменения его обобщенных координат и их производных по времени, которые обеспечивают заданные кинематические параметры захватного устройства, в частности получение требуемой траектории схвата. Манипулятор имеет 4 степени свободы. Схема манипулятора содержит 2 вращательные и 2 поступательные кинематические пары.
    2017-02-21

Показать все