Особенности требований по обеспечению анкеровки арматуры по нормам РБ и стран Евросоюза

Бурак И.А., Казимиров К.С. (Научный руководитель — Шилов А.Е.) Белорусский национальный технический университет, Минск, Беларусь

Цели работы — проанализировать требования по обеспечению анкеровки арматуры по нормативным документам СНБ 5.03.01-02. «Бетонные и железобетонные конструкции» и ТКП EN 1992-1-1:2004+AC:2008, IDT. «Еврокод 2. Проектирование железобетонных конструкций».

Предельное напряжение сцепления

Еврокод (п. 8.4.2)

Предельное напряжение сцепления должно быть достаточным для исключения разрушения от потери сцепления.

Расчетное значение предельного напряжения сцепления f_{bd} для стержней периодического профиля может быть рассчитано следующим образом: $f_{bd} = 2,25\eta_1\eta_2 f_{ctd}$,

 f_{ctd} — расчетное значение предела прочности бетона при растяжении.

С учетом повышенной хрупкости высокопрочного бетона $f_{\text{сtк}}$, 0,05 должно быть ограничено до значений для $C^{60}/_{75}$, если не может быть проверено, что средняя прочность сцепления увеличивается выше указанного предела;

- η_1 коэффициент, учитывающий качество условий сцепления и положение стержней во время бетонирования;
- $\eta_1 = 1.0$ коэффициент, учитывающий качество условий сцепления и положение стержней во время бетонирования;
- $\eta_1 = 0.7$ для всех других случаев, а также для конструктивных элементов, которые были изготовлены с применением слипформеров, если не может быть показано, что обеспечиваются хорошие условия сцепления;
 - η_2 коэффициент, учитывающий диаметр стержня:

$$\eta_2 = 1,0$$
 — для $\varnothing \le 32$ мм; $\eta_2 = (132 - \varnothing)/100$ — для $\varnothing > 32$ мм. СНБ (п. 11.2.33)

 f_{bd} — предельное напряжение сцепления по контакту арматуры с бетоном, определяемое по формуле $f_{bd} = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot f_{ctd}$,

 f_{ctd} — расчетное сопротивление бетона растяжению (при $\gamma_c = 1,5$). Для бетонов, у которых f_{ck} более 55 H/мм², при расчете по формуле (11.5) расчетное сопротивление f_{ctd} следует принимать как для бетона с $f_{ck} = 55$ H/мм²;

 η_1 — коэффициент, учитывающий влияние условий сцепления и положение стержней при бетонировании; η_1 =0,7, за исключением случаев, показанных на рисунке 1.

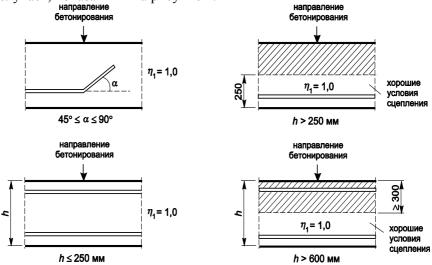


Рисунок 1. Случаи, для которых в формуле (11.5) следует принимать η_1 =1

 η_2 — коэффициент, учитывающий влияние диаметра стержня:

при $\emptyset \le 32$ мм $\eta_2 = 1,0$;

при $\varnothing > 32$ мм $\eta_2 = (132 - \varnothing)/100$;

 η_3 — коэффициент, учитывающий профиль арматурного стержня, равный:

для гладких стержней -1,5;

для арматуры с вмятинами – 2;

для стержней периодического профиля – 2,25.

Таким образом, различия заключаются в определение коэффициента η_3 , в Европе предельное напряжение сцепления рассчитывается сразу с учетом стержней периодического профиля, а соответственно коэффициент η_3 =2,25. Обусловлено это тем, что за период 1991-1997 основные европейские страны перешли на единый класс свариваемой арматуры периодического профиля для ненапряженных железобетонных конструкций с пределом текучести $\sigma_{\scriptscriptstyle T}$ = 500 МПа.

Расчетная длина анкеровки

Еврокод (п. 8.4.4)

Расчетная длина анкеровки lbd равна:

$$l_{\mathit{bd}} = \alpha_{\mathsf{1}} \alpha_{\mathsf{2}} \alpha_{\mathsf{3}} \alpha_{\mathsf{4}} \alpha_{\mathsf{5}} l_{\mathit{b,rqd}} \geq l_{\mathit{b,min}},$$

где α_1 , α_2 , α_3 , α_4 и α_5 — приведенные в таблице 8.2 коэффициенты:

- α_1 для учета влияния формы стержней при достаточном защитном слое;
- α_2 для учета влияния минимальной толщины защитного слоя бетона:
 - α₃ для учета влияния усиления поперечной арматурой;
- α_4 для учета влияния одного или нескольких приваренных поперечных стержней ($\varnothing_t > 0,6\varnothing$) вдоль расчетной длины анкеровки l_{bd} ;
- α_5 для учета влияния поперечного давления плоскости раскалывания вдоль расчетной длины анкеровки.

Произведение $\alpha_2 \alpha_3 \alpha_5 \ge 0.7$;

$$l_{b,rqd}$$
 — следует из формулы $l_{b,rqd} = \frac{\emptyset}{4} \cdot \frac{\sigma_{sd}}{f_{bd}}$

 $l_{b,min}$ — минимальная длина анкеровки, если не действует другое ограничение, принимается:

— для анкеровки при растяжении

 $l_{b,min} \ge \max [0.3 l_{b, rgd}; 10\emptyset; 100 mm];$

— для анкеровки при сжатии

 $l_{b,min} \ge \max [0,6 l_{b, rgd}; 10\emptyset; 100 mm]$

СНБ (п. 11.2.31-11.2.32)

Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное к продольной оси элемента сечение, в котором они используются с полным расчетным сопротивлением на длину не менее $l_{\rm bd}$.

При этом расчетную длину анкеровки ненапрягаемых стержней l_{bd} следует рассчитывать по формуле

$$l_{bd} = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot l_b \cdot \frac{A_{s,req}}{A_{s,prov}} \ge l_{b,min},$$

где $A_{s, req}$ — площадь продольной арматуры, требуемая по расчету;

 $A_{s, prov}$ — принятая площадь продольной арматуры;

 $\alpha_1, \, \alpha_2, \, \alpha_3, \, \alpha_4$ — коэффициенты, определяемые по таблице 11.6;

 l_b — базовая длина анкеровки, определяемая по формуле

$$l_b = \frac{\emptyset}{4} \cdot \frac{f_{yd}}{f_{bd}}$$
 (11.4) или таблице 11.8;

 $l_{b, min}$ — минимальная длина анкеровки, принимаемая:

— для растянутых стержней

$$l_{b,min} > max \ 0.6 l_b; \ 15\%; \ 100 \, {\rm MM} \ ;$$

— для сжатых стержней

$$l_{b,min} > max \ 0.3 l_b; \ 15\%; \ 100 \, {\rm MM} \ ;$$

Для стержней периодического профиля произведение $\alpha_1 \cdot \alpha_2 \cdot \alpha_4$ должно удовлетворять условию $\alpha_1 \cdot \alpha_2 \cdot \alpha_4 \ge 0.7$.

В СНБ расчетная длина анкеровки рассчитывается с учетом отношения $A_{s, \text{ req}}$ — площади продольной арматуры, требуемая по расчету к $A_{s, \text{ prov}}$ — принятой площади продольной арматуры; т.к. $A_{s, \text{ prov}} > A_{s, \text{ req}}$, то l_{bd} уменьшается, т.е. расчет по нормам СНБ получается более экономичным.

По европейским нормам в расчетах участвует на один коэффициент α больше, который учитывает форму стержней (прямая, отличная от прямой).

Также коэффициент, учитывающий усиление поперечной арматурой, не приваренной к главной арматуре, в отличие от СНБ имеет ограничения $\geq 0.7 \leq 1.0$. В Еврокоде коэффициента, который бы

учитывал усиление поперечным давлением для сжатых стержней, нет, в свою очередь нормы Беларуси принимают его равным 1.

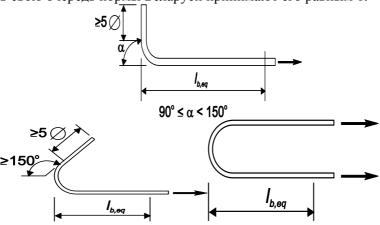


Рисунок 2. Правила отгиба гладких арматурных стержней

В СНБ имеется примечание для коэффициента, учитывающего влияние приваренной поперечной арматуры, которое отсутствует в европейских нормах: значения коэффициента α_3 в общем случае принимают для стержней периодического профиля, имеющих не менее трех приваренных поперечных стержней на длине анкеровки. В противном случае $\alpha_3 = 1,0$.

ЛИТЕРАТУРА

- 1. СНБ 5.03.01-02. «Бетонные и железобетонные конструкции».- Мн.:Стройтехнорм, 2003г. -274 с.
- 2. ТКП EN 1992-1-1:2004+AC:2008, IDT. «Еврокод 2. Проектирование железобетонных конструкций». Мн.: Стройтехнорм, 2010 г. 208 с.