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Abstract 
Currently, along with growth in industrial production, the requirements for product quality testing are 

also increasing. In the tasks of defectoscopy and defectometry of multilayer materials, the use of thermal non-
destructive testing method is promising. At the same time, interpretation of thermal testing data is complicated 
by a number of factors, which makes the use of traditional methods of data processing ineffective. Therefore, 
an urgent task is to search for new methods of thermal testing that will automate the diagnostic process and 
increase information content of obtained results. The purpose of article is to use the advances in deep learning 
for processing results of active thermal testing of products made of multilayer materials and development  
of an automated system for thermal defectoscopy and defectometry of such products.

The proposed system consists of a heating source, an infrared camera for recording sequences  
of thermograms and a digital information processing unit. Three neural network modules are used for 
automated data processing, each of which performs one of the tasks: defects detection and classification, 
determination of the defect depth and thickness. The software algorithms and user interface for interacting 
with system are programmed in the NI LabVIEW development environment.

Experimental studies on samples made of multilayer fiberglass have shown a significant advantage of the 
developed system over using traditional methods for analyzing thermal testing data. The defect classification 
(determining the type) error on the test dataset was 15.7 %. Developed system ensured determination  
of defect depth with a relative error of 3.2 %, as well as the defect thickness with a relative error of 3.5 %.

Keywords: thermal testing, multilayer materials, deep learning.

DOI: 10.21122/2220-9506-2021-12-2-98-107

98



Devices and Methods of Measurements
2021, vol. 12, no. 2, pp. 98–107  

A.S. Momot et al.

Приборы и методы измерений 
2021. – Т. 12, № 2. – С. 98–107
A.S. Momot et al.

Адрес для переписки:
Момот А.С.
Национальный технический университет Украины
«Киевский политехнический институт имени Игоря Сикорского»,
пр-т Победы, 37, г. Киев 03056, Украина
e-mail: drewmomot@gmail.com

Address for correspondence:
Momot A.S.
National Technical University of Ukraine
"Igor Sikorsky Kyiv Polytechnic Institute",
Peremohy Ave., 37, Kyiv 03056, Ukraine
e-mail:   drewmomot@gmail.com

Для цитирования:
A.S. Momot, R.M. Galagan, V.Yu. Gluhovskii.
Deep Learning Automated System for Thermal Defectometry  
of Multilayer Materials.
Приборы и методы измерений.
2021. – Т. 12, № 2. – С. 98–107.
DOI: 10.21122/2220-9506-2021-12-2-98-107

For citation:
A.S. Momot, R.M. Galagan, V.Yu. Gluhovskii.
Deep Learning Automated System for Thermal Defectometry  
of Multilayer Materials.
Devices and Methods of Measurements. 
2021, vol. 12, no. 2, рр. 98–107.
DOI: 10.21122/2220-9506-2021-12-2-98-107

Автоматизированная система тепловой дефектометрии 
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На сегодняшний день, вместе с ростом темпов промышленного производства повышаются также 
и требования к контролю качества продукции. В задачах дефектоскопии и дефектометрии многослой-
ных материалов перспективным является использование теплового метода неразрушающего контро-
ля. В то же время, интерпретация данных теплового контроля усложнена рядом факторов, что де-
лает использование традиционных методов анализа данных неэффективным. Поэтому актуальным  
заданием является поиск новых методов теплового контроля, которые позволят автоматизировать 
процесс диагностики и повысить информативность полученных результатов. Целью статьи являлось 
использование достижений в области глубокого обучения для обработки результатов активного те-
плового контроля изделий из многослойных материалов и разработка автоматизированной системы 
тепловой дефектоскопии и дефектометрии таких изделий. 

Предлагаемая система состоит из источника нагрева, тепловизора для регистрации последова-
тельностей термограмм и блока цифровой обработки информации. Для автоматизированной обра-
ботки данных используются три нейросетевых модуля, каждый из которых выполняет одну из задач: 
обнаружение и классификация дефектов, определение глубины залегания дефекта и его раскры-
тия (толщины). Программные алгоритмы и интерфейс взаимодействия с системой выполнены в среде 
разработки NI LabVIEW.

Экспериментальные исследования на образцах из многослойного стеклотекстолита показали 
значительное преимущество разработанной системы над методами, использующими традиционные  
алгоритмы анализа данных теплового контроля. Ошибка определения типа (классификации) дефекта  
на тестовом образце составила 15,7 %. Разработанная система обеспечила определение глубины де-
фекта с относительной погрешностью 3,2 %, а также толщины дефекта с относительной погрешно-
стью 3,5 %.

Ключевые слова: тепловой контроль, композиционные материалы, глубокое обучение.
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Introduction

Nowadays, products made of multilayer and 
composite materials are widely used in various 
industries. In particular, composite materials are 
increasingly used in aircraft industry, from which the 
most responsible elements of aircraft construction 
are made. At the same time, there is a tendency to 
increase the requirements for product quality testing. 
Timely detection of hidden defects makes it possible 
to prevent significant material and sometimes human 
losses. Due to a number of advantages, methods of 
active thermal non-destructive testing (TNDT) are 
used in composite materials testing tasks. Therefore, 
it is important to create automated systems for 
determining characteristics of defects based on the 
results of active TNDT, which will have increased 
informativeness, reliability and accuracy of 
defectometry in conditions of significant levels of 
noise and complex internal structure of the object of 
testing (OT).

The results of multilayer materials testing are 
influenced by a large number of random factors due to 
changes in the properties of composites, which occur 
due to complexity of their manufacturing processes, 
a large number of types of possible defects that 
cannot be formalized, imperfect inspection methods 
and defectoscopic equipment. Features of properties 
and physical characteristics of multilayer materials 
complicate the use of many existing methods of 
TNDT, which use mainly deterministic models 
and their corresponding data processing methods. 
Such methods do not provide the necessary noise 
immunity, measurement accuracy and reliability of 
testing [1].

A rather limited number of scientific papers 
are devoted to the analysis of thermal fields for 
the purpose of automated simultaneous detection, 
classification of defects and determination of 
their parameters. Initial researches were aimed at 
performing defectometry by solving the inverse 
tasks of TNDT. With the development of modern 
technologies of digital data processing, development 
trends have shifted to the application of latest 
statistical methods and intelligent systems based on 
deep learning.

Today, classical methods of digital signal 
processing, such as Fourier transform or wavelet 
analysis, are used to analyze the data of active 
TNDT [2, 3]. In particular, the algorithm of dynamic 
thermal tomography is implemented with the use 
of these methods [4]. Another approach is based 

on a comprehensive statistical analysis of the entire 
recorded sequence of thermograms, which uses the 
principal components analysis method [5]. Each of 
these methods has its advantages and disadvantages, 
but they are all used to solve a narrow range of tasks 
and are not universal and adaptive [6].

In [7, 8] the method of recognition of three-
dimensional defects is described. It uses the method 
of degree of similarity estimating for surface thermal 
field of OT with the existing 3D surface models, 
which were obtained by numerical modeling of 
three-dimensional thermal conductivity task. This 
approach in practice demonstrates low adaptability, 
as it requires construction of mathematical models of 
OT for each new testing task.

The work [9] is devoted to the study of deep 
learning application for composites testing. Study 
shows results of processing experimental data on 
carbon fiber testing using two neural networks, 
which provide both qualitative detection of hidden 
defects and defectometry elements. The first neural 
network is designed to detect defective areas, and 
the second is used to classify defects by depth. The 
high efficiency of the neural network in both types of 
problems is proved.

The authors of [10] conducted a study of the 
effectiveness of method for determining defects 
depth in multilayer materials using deep learning. 
It is presented and implemented a new algorithm 
based on the use of a multilayer neural network to 
determine the depth of defects in real time. Study 
uses computer simulations to create an artificial data 
set. An experimental validation of neural networks 
efficiency was performed, which showed an up to 
10 % error in determining defects depth at the level 
of 0.5 mm.

Analysis of existing publications shows that the 
use of modern intelligent systems allows to solve the 
problems of thermal defectometry with increased 
efficiency. Existing studies prove the prospects of 
using deep learning for defect classification and 
defectometry. The error in measuring defects depth 
by traditional methods reaches 7–10 %, while neural 
networks can reduce it to 2.5–3 %. At the same 
time, existing works do not provide a quantitative 
assessment of the effectiveness of determining 
defects thickness using deep learning. The authors 
mainly focus on solving one specific testing task, 
while the modern approach requires a comprehensive 
automated analysis of OT in order to describe it as 
fully as possible. Currently, there are no systems 
that in practice implement a simultaneous automated 
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solution to the problems of detecting defects of 
multilayer materials by the active thermal method, 
their classification and defectometry.

Thus, there is a need to develop new methods 
and automated testing systems for products 
made of multilayer materials. A large number of 
interconnected informative parameters, impossibility 
of linear separation of defects classes on diagnostic 
grounds, need for automation and increasing testing 
informativeness require to use the latest data 
processing systems, in particular, based on deep 
learning algorithms.

Physical principles of active thermal 
nondestructive testing

Dynamic thermal field is described by the 
function T (x, y, τ). During the active thermal 
non-destructive testing, the character of change 
in instantaneous temperature values over time at 
surface points of OT is considered. To obtain these 
dependences, the OT is heated by a heat source for 
a certain time. The process of heating and further 
cooling of OT is registered using a thermal imager. 
Resulting sequence of thermograms reflects the 
change in temperature field on the surface of the OT 
over time [11].

Considering the temperature dynamics at 
individual points (pixels) of thermograms, which 
correspond to the coordinates of OT surface, 
it is possible build a temperature profile – a 
chart of temperature change over time for this 
point (Figure 1). As a rule, in defect-free areas, 
the nature of temperature change is constant and is 
considered known. In this case, we can enter some 
reference temperature Tnd  (xnd  , ynd  , τ), which is 
considered defect-free. In the defect zone, the regular 
nature of the thermal field is disturbed and local 
temperature differences Td   (x, y, τ), occurs, which 
lead to a change in the temperature profile. Thus, 
it is possible to calculate the value of temperature 
difference between defective and defect-free areas:

The time τopt, at which the value of ΔT (x, y, τ) 
in this area of OT becomes the maximum, is called 
the optimal time of testing:

As the size of the defect increases, its heating 
rate decreases, which leads to a change in the shape 

of the temperature profile. In particular, for deeper 
defects the value of ΔТmax decreases and the time of 
optimal observation τopt increases.

Figure 1 – Temperature profiles in different points of 
thermogram

Quality of obtained thermograms significantly 
depends on the characteristics of heat source and 
instrument for recording the thermal field. Ensuring 
uniform heating in practice is a difficult task, as the 
nature of heating is influenced by imperfections of 
the heat source and numerous external factors, such 
as influence of external emitters, air movement 
etc. Due to the anisotropy of characteristics, 
composite materials have different values of thermal 
conductivity along the coordinate axes, which leads 
to shape distortion of defects thermal imprints [12]. 
Therefore, task of testing process automating and 
finding new or improving existing testing methods 
that will provide high informativeness, reliability 
and accuracy in such conditions is relevant.

Automated system of thermal defectometry 
structure

Trends in the development of TNDT place the 
following requirements on testing systems: a high 
level of automation; high informativeness, speed 
and productivity of testing; versatility and high 
adaptability; high reliability of testing and accuracy 
of defectometry. To meet these requirements, it is 
necessary to use modern hardware and software. At 
the same time, the general scheme of active thermal 
testing remains unchanged. The object of testing is 
exposed by a heat source. Inside a solid, thermal 
energy is distributed in all directions due to the 
diffusion process. In the presence of hidden defects, 
the heat fluxes inside OT are redistributed, which  
leads to the appearance of specific temperature 
anomalies on its front and rear surfaces.  

∆ ∆T x y Tmax max opt( , , ) ( ).τ τ=

∆T x y T x y T x yd nd nd nd( , , ) ( , , ) ( , , ).τ τ τ= −
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The temperature field of OT is observed and registered 
using an infrared camera. Temperature signals, 
presented in the form of thermograms, are transmitted 
to an automated data processing system on a PC to 
detect defects and determine their parameters [13].

The choice of testing scheme, characteristics 
of heat source and thermal imaging equipment 
significantly affect the diagnostic result. The 
efficiency of traditional methods of thermogram 
sequence processing directly depends on these 
factors. This reduces the versatility of testing systems 
that use standard data processing algorithms. In 
particular, changing the OT, heat source or thermal 
imager in many cases leads to the need for a complete 
recalculation of system parameters. The use of 
modern methods of TNDT data processing on the 
basis of deep learning allows you to add information 
about new OT or take into account changes in testing 
conditions without losing previous data. Because all 
information about network experience is contained 
in weights, retraining the system in the event of 
inspection of new objects or the appearance of new 

types of defects will not necessitate changes in 
further data processing algorithms.

Based on the analysis of existing schemes of 
active thermal testing, it is possible to synthesize 
the scheme of realization of automated TNDT data 
processing system using an improved method of 
determining the defects characteristics. This method 
involves automated data analysis in three neural 
network modules. The modular structure facilitates 
construction and modification of the system 
and increases overall efficiency of its work by 
optimizing the settings of modules to solve specific 
problems [14].

General block diagram of the automated system 
for determining defects characteristics is shown in 
Figure 2. The system is universal and can be used 
for various testing schemes and regardless of the 
characteristics of heat source, infrared camera or 
OT parameters. The core of each neural network 
module uses a deep feedforward network. Software 
algorithms of the system are implemented in  
NI LabVIEW environment.

Experimental studies of the proposed system 

In order to conduct experimental studies of 
the efficiency of automated thermal defectometry 
system, two training and one test sample of multilayer 
fiberglass were developed. This material is used as a 
structural for manufacture of critical parts with high 
strength. Developed samples are square plates of five 
layers fiberglass. Total thickness of each sample is 
5 mm, the thickness of one layer is 1 mm. The side 
of the plate is 100 mm.

The scheme of the test sample is shown in 
Figure 3. It contains hidden artificial defects of 

three types: air cavities (white in Figure 3), paper 
foreign inclusions (red) and aluminum third inclu-
sions (blue). Defects have a square shape, the size 
of side is from 10 mm to 4 mm. Hidden artificial 
defects are located at depths of 1 to 3 mm and have 
different values of thickness: 1 mm, 2 mm or 3 mm.

The scheme of bilateral active TNDT was used 
during the experiment. The power of infrared heat 
source was 1 kW. To minimize the impact of thermal 
radiation from the heat source on results, a steel 
protective plate was used, which contains a hole and 
a mount for OT. The plate with OT was located at 
a distance of 100 mm from the heater. The distance 

Figure 2 – The structure of proposed automated active thermal defectometry system
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from OT to the infrared camera is 400 mm. Testo 
876 infrared camera was used to record a sequence 
of thermograms.

Figure 3 – Test sample scheme

The infrared camera and heat source are 
controlled by operator in manual mode. Ambient 
temperature during the experimental studies was 
20 °C. At the beginning of experiment, the first 
thermogram was registered OT at the initial time. 
After turning on the infrared heater and putting it 
to work, recording of thermograms begins. Time 
interval between adjacent thermograms is 6 s. 
Heating and recording of the experimental sequence 
of thermograms was carried out for 120 s. After the 
thermograms recording procedure is completed, 
the heater is switched off. Experiment resulted in a 
sequence of 20 thermograms. Obtained results reflect 
the process of OT thermal field changing at the stage 
of heating.

Recorded thermogram sequences were exported 
to a PC. The initial processing of thermograms was 
carried out using proprietary Testo IRSoft software. 
The resolution of the each obtained thermogram is 
320 × 240 pixels. Thermograms are stored as arrays 
of pixel temperatures. Based on the obtained results, 
a set of initial data for further processing is formed. 
The thermogram of test sample at the optimal time of 
testing is shown in Figure 4.

Figure 4 – Thermogram of the test sample at optimal time 
of testing 

On the optimal thermogram it is possible to 
distinguish visually 8 thermal prints of artificial 
defects. Due to significant boundary effects, 
information on bottom row of defects is lost. In 
general, the OT thermogram is characterized by 
uneven heating, which complicates its automated 
processing by standard methods. Next, only the 
region of interest (which is directly OT) is considered.

Figure 5a shows samples of temperature 
profiles of the defect-free and defective areas for 
different types of defects, lying at a depth of 3 mm. 
An example of differential temperature signals from 
artificial defects of the test sample, which are located 
at different depths, is shown in Figure 5b. 

Figure 5 – Signals from the defect-free area and the defects 
of test sample: a – temperature profiles at a 3 mm depth; 
b – differential temperature signals at different depths

To form a set of training vectors for neural 
network modules, two training samples were 
developed and manufactured. The material, structure 
and geometric dimensions of the training samples 
correspond to similar parameters of test sample. 
The procedure of training samples testing took place 
according to the method and conditions described for 
the test sample. Training samples contain artificial 
internal defects in the form of air cavities, foreign 
aluminum and paper inclusions with different 
geometric dimensions, thickness and depth values. 
In total, 6 artificial models with different parameters 
were created for each type of defects.

As a result, a set of temperature profiles vectors 
with a total number of 6545 samples was formed. 
This set includes 3605 examples of temperature 
profiles from defect-free areas, 1414 profiles of 
defects in the form of air cavities, 1019 profiles 
of defects in the form of paper inclusions and 
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507 profiles of defects in the form of aluminum 
inclusions. Training dataset is characterized by a 
certain unevenness, which arose due to the limited 
number of training samples. The set of training 
vectors was divided into training /  validation /  test 
subsets in the proportion of 70 %  /  15 % /  15 % 
respectively.

In order to process the experimental sequence of 
thermograms of the test sample, neural networks of 
appropriate modules for detection and classification, 

determination of depth and thickness of defects 
were created and trained. To solve these tasks, it 
is advisable to choose the architecture of neural 
networks for the detection and classification of 
defects, which is shown in Figure 6. Architecture of 
networks for determining defects depth and thickness 
is similar. The input layer contains 20 neurons, 
which corresponds to the number of thermograms in 
sequence. The source layer contains 4 (according to 
the number of classes) or 1 neuron. 

The Levenberg-Markard algorithm was used 
as an optimizer. Loss function – MSE, metric – 
MAE. According to the training results, MAE of 
defects depth determination on the validation set was 
0.028 mm, MAE of thickness determination was 
0.019 mm.

The defects map, obtained by the results 
of work of trained neural network module for 
defects detection and classification, is shown in 
Figure 7. All 12 artificial defects were detected 
and unmistakably classified on the map. Defects 
color on the map corresponds to their depth. 

The shape and size of the defects are close to 
true ones. In the image we can see some dots of 
incorrectly classified temperature profiles, which 
can be filtered by a median filter. In addition, 
Figure 7 also shows binary defect maps obtained 
using classical methods: optimal thermogram, 
Fourier and wavelet analysis methods, principal 
components analysis method (PCA), and dynamic 
thermal tomography (DTT). Visually it is possible 
to notice the increased efficiency of offered system 
on the basis of deep learning in comparison with 
classical methods.  

Figure 6 – Architecture of defect detection and classification neural network 

Figure 7 – The results of processing experimental data by traditional methods and using the proposed system 
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Figure 8 shows the thermal tomogram obtained 
by the DTT method and the image of test sample 
internal structure, which was built on the results of 
proposed system. At the defects boundaries there 
are negative edge effects in the form of anomalous 

emissions. This effect can be eliminated using 
median filtering. In general, image of the internal 
structure is reliable. Quantitative evaluation of 
certain parameters and comparison of results with 
traditional methods is given below.

а b

Table
Results of thermograms sequence processing by different methods

Criterion / method Thermogram Fourier 
analysis

Wavelet 
analysis PCA DTT Neural 

network
The number of detected 
defects 8 10 7 11 8 12

Defect classification 
error, % – – – – – 15.7

Tanimoto criterion, % 19.5 10.9 6.4 23.6 7.0 88.1

Depth estimation error, % – – – – – ± 3.2

Thickness estimation 
error, % – – – – – ± 3.5

The neural network module for defects detection 
and classification allows to determine the size of 
defects by their thermal imprints with the highest 
accuracy among considered methods. Temperature 
profiles were automatically classified with an error 
of 15.7 %. The value of Tanimoto criterion [15]  

at 88.7 % confirms the high reliability of constru-
cted defects map.

In considered conditions of testing the use of 
deep learning is the only method that gives chance 
to define defects depth effectively. Corresponding 
neural network module allows to determine the depth 

Figure 8 – Results of processing experimental data: a –  thermal tomogram by DTT method; b – internal structure of 
the OT (by proposed system)

Discussion
According to the results of quantitative 

evaluation of effectiveness of defects detecting 
in test sample by different methods (Table), it is 
established that the best results are demonstrated 

by developed automated system based on deep 
learning. In particular, the use of neural networks 
is only method by which it was possible to detect 
all 12 artificial defects and automatically classify 
them.
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of artificial defects of in test sample with a relative 
error within ± 3.2 %. DTT method in a similar task 
showed negative results, which makes it impossible 
to assess the accuracy of determining defects depth.

Relative error in determining defects thickness 
by neural network module is ± 3.5 %. Constructed 
thermal tomogram of the internal structure of 
sample is generally reliable, but at the boundaries 
of some defects there are negative boundary effects. 
Therefore, the thickness measurement must be 
performed at the central points of thermal imprints 
of the defects.

Consequently, the use of proposed automated 
system based on deep learning demonstrates 
the advantages of neural network modules over 
traditional methods in all testing tasks. Due to the 
high noise immunity and generalizing properties 
of neural networks, the presence of non-uniform 
heating has a weak effect on the efficiency of defects 
detection in multilayer materials and the accuracy of 
measuring their parameters. 

Conclusion

In the paper offered to use the deep learning 
approach for automation of thermal defectometry 
of products from multilayer materials. The system 
for implementation of this method consists of three 
modules based on neural networks. Modules are 
designed to solve tasks of defects classification 
by type, determining their depth and thickness. 
Experimentally established that developed automated 
system allowed to detect and classify all artificial 
defects embedded in the test sample, and to estimate 
their depth with an error within ± 3.2 % and thickness 
with an error up to ± 3.5 %. Defect maps constructed 
as a result of processing experimental data using the 
proposed system have a high reliability according to 
Tanimoto criterion (88.1 %). In addition, the results 
of comparative analysis show that the developed 
system has an advantage over traditional methods in 
qualitative and quantitative indicators.

The main direction for further research is to 
optimize the architecture of neural networks of 
relevant system modules by using the latest advances 
in deep learning. In particular, it is proposed to 
introduce normalization and dropout layers into 
the network architecture, to change the training 
optimization algorithm and activation function of 
fully connected layers. An important task is also the 
formation of a wide training samples dataset with 

different defects and materials configurations. This 
will expand the scope of developed automated system 
without the need to retrain neural networks for each 
individual task or type of multilayer material.
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