имеют прямой привод, малую массу. За счёт отсутствия узлов трении и нос таких двигателей минимален, достигается высокая надёжность и потовечность.

Но, наряду с выниеперечисленными преимуществами, эти двигато имеют недостаток — низкий КПД. Исследование таких двигателей новатило, что расчёт и моделирование электромагнитных полей, их оптимивания является крайне важной задачей при конструкровании подобных двигатовей, позволяющей добиться максимального КПД и устойчивого врашениротора в заданном положении.

Разработаны методы и способы моделирования и расчётов электромонитных полей статора, позволяющих оптимизировать КПД асинхрониоторцевого двигателя с безопорным ротором.

УДК 621.01.(075.8)

Проверка правильности разработанной технологической схемы сборки компьютерным 3D моделированием

Кирсанов А.Н., Кожемякин В.Г. Восточноукраинский национальный университет им. В.Даля (г. Луганск, Украина)

Сборка изделий является заключительным этапом производственного процесса и от качества ее выполнения зависят эксплуатационные характ ристики, надежность и долговечность машин.

Важным этапом разработки технологического процесса (ТП) сборки является составление схемы сборки изделия. Технологическая схема сборки обеспечивает наглядное изображение сборочного процесса и является удобным оперативным документом, показывающим последовательность выполнения сборочных операций. Схема сборки — так же и организационный документ, согласно которому организуется выполнение сборочного процесса, производится комплектование машины, подача сборочных единиц и деталей в надлежащей последовательности к месту сборки.

При наличии образца изделия составление технологической схемы сборки упрощается . В этом случае последовательность сборки может быть установлена и проверена в процессе его пробной разборки.

Правильность последовательности выполнения соединения деталей при проектировании ТП сборки новых изделий позволяет SolidWorks Animator - специализированный модуль популярной CAHP SolidWorks, предназна ченный для разработки анимационных роликов на основе 3D-моделей. Он позволяет визуализировать процессы сборки рассматриваемого узла или изделия. Последовательность и независимость сборки обеспечивается по степенным введением в собираемый объект 3D-моделей необходимых де

таким образом, чтобы ранее установленные не затрудняли дальнейко сборку, не нарушали точность и другие параметры соединений. Инприментарий построения сечений и разрезов, измерения и обнаружения полкновений позволяет выполнить детальную проверку и оптимизацию порочных операций. Solidworks позволяет виртуально проверить прапривность процесса сборки до запуска в производство, уменьшает риски, полашные с внесением изменений в действующие или внедрением новых пологических процессов сборки

УДК 621.313.333

Математическая модель дискового асинхронного двигателя с ротором без механических опор

Ерошин С.С, Мирошник С.А. Восточноукраинский национальный университет им. В.Даля (г. Луганск, Украина)

Одним из перспективных направлений современного машино- и припоростроения является создание машин с прямым приводом инструмента или рабочего органа. Применив дисковый асинхронный двигатель (ДАД) спецнальной конструкции, можно кольцевой инструмент привести в успойчивое вращательное движение и удерживать в пространстве без мехашиеских опор и электрических контактов за счет сил магнитного поля.

Важным показателем ДАД с кольцевым ротором без механических опор является его механическая характеристика, которая может быть точнена, если известен закон распределения вихревых токов в роторе.

Токи в сплощном роторе ДАД, в отличие от короткозамкнутой обмотки, имеют тангенциальные составляющие в рабочей зоне электродвигателя, которые создают бесполезные радиальные силы. Они не участвуют в создании вращающего момента и вызывают дополнительные потери.

С увеличением частоты тока в роторе возникает эффект вытеснения выпенциальных составляющих тока к периферии ротора. В результате чего плотность тока в радиальном направлении распределена не равномерно. При этом активное сопротивление ротора увеличивается.

Реальное неравномерное распределение тангенциальных вихревых токов в активной части ротора, было заменено равномерным распределением в эквивалентных зонах, расположенных на перифериях ротора.

В результате исследования математической модели получены механические характеристики двигателя со свободным кольцевым ротором в зашисимости от геометрических и электрических параметров. Установлено, что вращающий момент ротора с ростом скольжения монотонно увеличивается. При увеличении толщины ротора момент быстро возрастает и дос-