ПОСТРОЕНИЕ КРИВОЙ КИСЛОТНО-ОСНОВНОГО ТИТРОВАНИЯ

Студент гр. 11310117 Бородин А.Н. Ассистент Люцко К.С. Белорусский национальный технический университет

Цель: построить кривую кислотно-основного титрования $0,1~\mathrm{M}$ раствора уксусной кислоты (CH₃COOH) с $0,1~\mathrm{M}$ раствором гидроксида натрия (NaOH). Подобрать индикатор для титрования.

В любой момент титрования до точки эквивалентности в растворе существует буферная смесь, состоящая из неоттитрованной уксусной кислоты и образовавшегося при титровании ацетата натрия. В точке эквивалентности: в растворе находится слабое основание (ацетат-ион). После точки эквивалентности: величина рН определяется только избытком добавленного титранта (гидроксида натрия), так как ацетат-ион слабое основание. Избыток щелочи создает в растворе концентрацию ионов.

Результаты проведенных расчетов представлены в таблице.

Табл. Значения рН при титровании 0,1 М раствора уксусной кислоты 0.1 М раствором гидрооксида натрия

Добавлено 0,1 M NaOH, мл	[H ⁺], моль/л	рН
0,0	1,32·10 ⁻³	2,88
9,0	1,77·10 ⁻⁴	3,76
50,0	1,75·10 ⁻⁵	4,76
90,0	1,94·10 ⁻⁶	5,71
99,0	1,77·10 ⁻⁷	6,76
99,1	1,75·10 ⁻⁸	7,76
100,0	1,32·10-9	8,88
100,1	2.10-10	9,7
101,0	2.10-11	10,7

Построенная по этим данным кривая титрования уксусной кислоты раствором гидроксида натрия представлена на рисунке.

Как видно, pH раствора до точки эквивалентности изменяется плавно. Линия нейтральности пересекается с кривой титрования еще до точки эквивалентности. В области точки эквивалентности наблюдается скачок титрования от pH 7,76 до 9,7, а точка эквивалентности — при pH 8,88. Для титрования уксусной кислоты гидроксидом натрия пригоден индикатор фенолфталеин. Его показатель титрования (pT = 9,0) входит в пределы скачка pH на кривой титрования и почти совпадает с точкой эквивалентности.

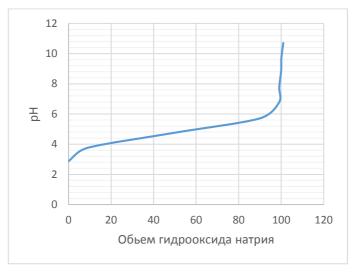


Рис. Кривая титрования 0,1 M раствора уксусной кислоты 0,1 M раствором гидрооксида натрия

УДК 620.22

ОБНАРУЖЕНИЕ СЕЛЕКЦИОННЫХ ПРИЗНАКОВ В ПШЕНИЦЕ С ИСПОЛЬЗОВАНИЕМ ПОДХОДА КАРТИРОВАНИЯ С ПОПРАВКОЙ НА НЕРАВНОВЕСИЕ ПО СЦЕПЛЕНИЮ

Студент гр. 11310117 Бородин А.Н. Ассистент Люцко К.С. Белорусский национальный технический университет

Селекция с использованием маркеров, чему способствуют сборки эталонного генома, может помочь в создании сортов, адаптированных к изменяющимся условиям окружающей среды. Однако аномальное неравновесие по сцеплению (LD), когда отдельные маркеры показывают высокое LD с маркерами на других хромосомах, но низкое LD с соседними маркерами, является серьезным препятствием для генетических исследований. Мы использовали подход LD-коррекции, чтобы преодолеть эти недостатки, исправляя физическое положение маркеров, полученных из массивов 15 и 135 К на панели разнообразия мягкой пшеницы, представляющей 50-летнюю историю селекции. Мы обнаружили предполагаемое несоответствие 11,7% маркеров и улучшили физическое выравнивание 5,4% маркеров. Популяционный анализ показал снижение генетического разнообразия с течением времени в результате селекционных усилий к одно-