1. Разработана методика расчета показателей работы парового котла, надстроенного ГТУ, с использованием формул, полученных по приведенным характеристикам топлив. При этом при определении потери теплоты с уходящими газами учитывается вид топлива, используемого в камере сгорания ГТУ и топке парового котла, а также соотношения в расходах этих видов топлива.

2. Абсолютная величина потери теплоты с уходящими газами Q_2 должна определяться через q_2 по суммарной теплоте топлива, использованного как в паровом котле, так и камере сгорания ГТУ.

3. Сопоставление результатов расчетов по приведенной методике с данными расчета потерь теплоты с уходящими газами по прямому балансу показало их удовлетворительную сходимость.

ЛИТЕРАТУРА

1. Методические указания по подготовке и передаче информации о тепловой экономичности электростанций и энергосистем. НУ-34-70. – М.: СПО Союзтехэнерго, 1992.

2. Методические указания по составлению отчета электростанций и акционерного общества энергетики и электрификации о тепловой экономичности оборудования. РД 34.08.552-95. – М.: СПО ОРГРЭС, 1995.

3. Разработ к а методических указаний по подготовке и передаче информации о тепловой экономичности работы парогазовых установок различного типа: Отчет о НИР. – М.: ВТИ, 1992.

4. Рубинштейн Я. М., Щепетильников М. И Исследование реальных тепловых схем ТЭСи АЭС. – М.: Энергоиздат, 1982. – 272 с.

5. О пыт эксплуатации системы автоматизированного контроля технического состояния газотурбинных установок ГТ-35 парогазовых блоков ПГУ-250 / А. И. Механиков, В. И. Ахрамеев, С. В. Максимов и др. // Электрические станции. – 1989. – № 2. – С. 48–54.

6. Пеккер Я. Л. Теплотехнические расчеты по приведенным характеристикам топлива. – М.: Энергия, 1977. – 256 с.

Представлена кафедрой ТЭС

Поступила 13.04.2000

УДК 536.3 (035.5) + 621.382.2

РАДИАЦИОННЫЙ ТЕПЛООБМЕН ОДИНОЧНОГО ОРЕБРЕННОГО ЦИЛИНДРА

Канд. техн. наук, доц. АКСЕНОВ В. В., канд. техн. наук САМОРОДОВ А. В., докт. техн. наук, проф. КУНТЫШ В. Б.

Архангельский государственный технический университет

Радиационный теплообмен вносит существенный вклад в величину теплового потока с теплоотдающей поверхности [1-5], основным элементом которой часто является, особенно в аппаратах воздушного охлаждения [6-8], поверхность оребренных цилиндрических труб. Поэтому задача оценки радиационной составляющей теплового потока с оребренных поверхностей является актуальной. В данной работе рассматривается стационарный режим излучения линной цилиндрической трубы, для которой

$$d_0 << l$$
,

где d_0 — диаметр по основанию ребер;

l – длина трубы.

Тепловой поток излучением с поверхности такой трубы можно представить как совокупность тепловых потоков Q из N одинаковых элеменпарных ячеек, на которые может быть разбита оребренная труба:

$$Q = N Q_0. \tag{1}$$

В качестве элементарной ячейки здесь принимается небольшой участок оребренной трубы диаметром по основанию ребер d_0 , ограниченный двумя полуребрами-дисками толщиной, равной половине толщины ребра $\delta/2$, и диаметром ребра d_p , находящихся на расстоянии *t* друг от друга (рис. 1).

Рис. 1. Схема элементарной ячейки трубы с круглыми ребрами

Так как $F_1 = F_3$, площадь поверхности элементарной ячейки

$$S_0 = 2F_1 + F_2 + F_5,$$

где

$$F_{1} = \frac{\pi d_{0}^{2}}{4} \left[\left(\frac{d_{p}}{d_{0}} \right)^{2} - 1 \right];$$
(2)

$$F_2 = \pi \ d_0 \ t; \tag{3}$$

$$F_5 = \pi \, d_{\rm p} \, \delta. \tag{4}$$

Следовательно, получим

$$S_0 = \pi \, d_0(t+\delta)\lambda,\tag{5}$$

83

где

$$\lambda = 1 + \frac{x-1}{y(z+1)} \bigg[zy + \frac{1}{2}(x+1) \bigg];$$
(6)

$$x = \frac{d_{\rm p}}{d_0}; \tag{7}$$

$$y = \frac{t}{d_0} ; (8)$$

$$z = \frac{\delta}{t} \,. \tag{9}$$

Площадь поверхности трубы S равна суммарной площади N элементарных ячеек

$$S = N S_0. \tag{10}$$

Поэтому плотность теплового потока излучением q_{π} с поверхности трубы определится с учетом (1), (5) и (10) по формуле

$$q_{\pi} = \frac{Q_0}{\pi d_0 (t+\delta)\lambda},\tag{11}$$

где

$$Q_0 = Q_{\Pi} + Q_{\rm p},\tag{12}$$

 $Q_{\rm ff}$ — тепловой поток излучением из межреберной полости с поверхностей F_1 , F_2 , F_3 ;

 $Q_{\rm p}$ — то же, с боковой поверхности полуребер элементарной ячейки с поверхности F_5 (рис. 1).

Поверхности F_1 , F_2 , F_3 , F_5 ячейки считаем выпуклыми, имеющими в стационарном режиме одинаковую температуру T, а их излучение – равновесным и диффузным, соответствующим излучению серого тела, так что

$$a = \varepsilon,$$
 (13)

где a и є — соответственно поглощательная и излучательная способности этих поверхностей, причем величины a и є принимались одинаковыми для всех поверхностей элементарной ячейки.

Для расчета величины $Q_{\rm n}$ условно заменим элементарную ячейку абсолютно черной поверхностью F_4 (рис. 1), диаметр которой равен диаметру ребра $d_{\rm p}$, а высота — межреберному расстоянию t, т. е.

$$F_4 = \pi \ d_{\rm p} \ t. \tag{14}$$

Примем температуру этой поверхности равной температуре окружающей среды T_0 .

Для замкнутой системы поверхностей F_1 , F_2 , F_3 , F_4 можно записать согласно [1–3]:

$$Q_{12} = \varphi_{12}Q_{13} - \varphi_{21}Q_{23}; \qquad (15)$$

$$Q_{13} = \varphi_{13}Q_{13} - \varphi_{31}Q_{33}; \qquad (16)$$

$$Q_{14} = \varphi_{14}Q_{19} - \varphi_{41}Q_{49}; \qquad (17)$$

$$Q_{21} = \varphi_{21} Q_{23} - \varphi_{12} Q_{13}; \qquad (18)$$

$$Q_{23} = \varphi_{23}Q_{23} - \varphi_{32}Q_{33}; \qquad (19)$$

$$Q_{24} = \varphi_{24} Q_{23} - \varphi_{42} Q_{43}; \qquad (20)$$

$$Q_{31} = \varphi_{31}Q_{33} - \varphi_{13}Q_{13}; \qquad (21)$$

$$Q_{32} = \varphi_{32} Q_{33} - \varphi_{23} Q_{23}; \qquad (22)$$

$$Q_{34} = \varphi_{34} Q_{33} - \varphi_{43} Q_{43} , \qquad (23)$$

где соответственно Q_{12} , Q_{13} , Q_{14} — тепловые потоки с поверхности F_1 на поверхности F_2 , F_3 , F_4 ; Q_{21} , Q_{23} , Q_{24} — с поверхности F_2 на поверхности F_1 , F_3 , F_4 ; Q_{31} , Q_{32} , Q_{34} — с поверхности F_3 на поверхности F_1 , F_2 , F_4 ; φ_{12} , φ_{21} — средние угловые коэффициенты излучения поверхностей F_1 и F_2 ; φ_{13} , φ_{31} — F_1 и F_3 ; φ_{14} , φ_{41} — F_1 и F_4 ; φ_{23} , φ_{32} — F_2 и F_3 ; φ_{24} , φ_{42} — F_2 и F_4 ; φ_{34} , φ_{43} — F_3 и F_4 ; Q_{13} , Q_{23} , Q_{33} , Q_{43} — эффективные потоки излучения с поверхностей F_1 , F_2 , F_3 , F_4 .

Тепловой поток из межреберной полости ячейки

$$Q_{\rm II} = Q_{14} + Q_{24} + Q_{34}. \tag{24}$$

Поверхности F_1 , F_2 , F_3 имеют одинаковую температуру. Следователь-

$$Q_{12} = Q_{13} = Q_{21} = Q_{23} = Q_{31} = Q_{32} = 0.$$
 (25)

Эффективные потоки излучения поверхностей F_1 , F_2 , F_3 складываются из потоков собственного и отраженного излучений, а абсолютно черной поверхности F_4 — только из собственного излучения. Поэтому

$$Q_{13} = Q_1 + Q_{10}; (26)$$

$$Q_{23} = Q_2 + Q_{20}; (27)$$

$$Q_{33} = Q_3 + Q_{30}; (28)$$

$$Q_{43} = Q_4, \tag{29}$$

где соответственно Q_1 , Q_2 , Q_3 , Q_4 – потоки собственного излучения с поверхностей F_1 , F_2 , F_3 , F_4 , a Q_{10} , Q_{20} , Q_{30} – отраженного излучения с поверхностей F_1 , F_2 , F_3 .

Согласно (13):

$$Q_1 = \varepsilon c_0 \left(\frac{T}{100}\right)^4 F_1; \qquad (30)$$

$$Q_2 = \varepsilon c_0 \left(\frac{T}{100}\right)^4 F_2; \tag{31}$$

$$Q_3 = \varepsilon c_0 \left(\frac{T}{100}\right)^4 F_3,$$
 (32)

а для F₄ как для абсолютно черной поверхности

$$Q_4 = c_0 \left(\frac{T_0}{100}\right)^4 F_4 , \qquad (33)$$

где c_0 – постоянная Стефана-Больцмана.

Учитывая (13), можно записать:

$$Q_{10} = (1 - \varepsilon)\varphi_{21}Q_{23} + (1 - \varepsilon)\varphi_{31}Q_{33} + (1 - \varepsilon)\varphi_{41}Q_{43}; \qquad (34)$$

$$Q_{20} = (1 - \varepsilon)_{12}Q_{13} + (1 - \varepsilon)\varphi_{32}Q_{33} + (1 - \varepsilon)\varphi_{42}Q_{43}; \qquad (35)$$

$$Q_{30} = (1 - \varepsilon)\varphi_{13}Q_{13} + (1 - \varepsilon)\varphi_{23}Q_{23} + (1 - \varepsilon)\varphi_{43}Q_{43}.$$
(36)

Решив (34)-(36) совместно с уравнениями (26)-(29), получим:

$$Q_{13} = \frac{Q_1 + (1 - \varepsilon)\varphi_{41}Q_4}{1 - (1 - \varepsilon)(\varphi_{12} + \varphi_{13})};$$
(37)

$$Q_{23} = \frac{Q_2 + (1 - \varepsilon)\phi_{42}Q_4}{1 - (1 - \varepsilon)(\phi_{21} + \phi_{23})};$$
(38)

$$Q_{33} = \frac{Q_3 + (1 - \varepsilon)\phi_{43}Q_4}{1 - (1 - \varepsilon)(\phi_{31} + \phi_{32})}.$$
(39)

Элементарная ячейка является симметричной системой. Поэтому:

$$\varphi_{14} = \varphi_{34}; \tag{40}$$

$$Q_{13} = Q_{33};$$
 (41)

$$\varphi_{41} = \varphi_{43}.$$
 (42)

Из свойства взаимности лучевых потоков [1, 2] следует, что

$$F_4 \phi_{41} = F_1 \phi_{14}. \tag{43}$$

Решив совместно уравнения (24), (37)-(39) с учетом соотношений (40)-(43) и (30)-(33), получим

$$Q_{\Pi} = c_0 \left[c_1 \left(\frac{T}{100} \right)^4 - c_2 \left(\frac{T_0}{100} \right)^4 \right], \tag{44}$$

где

$$c_{1} = \varepsilon \left[\frac{2\varphi_{14}F_{1}}{1 - (1 - \varepsilon)(\varphi_{12} + \varphi_{13})} + \frac{\varphi_{24}F_{2}}{1 - (1 - \varepsilon)(\varphi_{21} + \varphi_{23})} \right];$$
(45)

$$c_{2} = \left[2\varphi_{14}\frac{F_{1}}{F_{4}} + \varphi_{42} - 2\varphi_{14}\frac{(1-\varepsilon)\varphi_{41}}{1-(1-\varepsilon)(\varphi_{12}+\varphi_{13})} - \varphi_{24}\frac{(1-\varepsilon)}{1-(1-\varepsilon)(\varphi_{21}+\varphi_{23})}\right]F_{4}.$$
 (46)

Поверхность F_5 элементарной ячейки можно рассматривать как поверхность конечных размеров, находящуюся в безграничном пространстве. Поэтому, следуя [3], можно показать, что

$$Q_{\rm p} = c_0 \varepsilon F_5 \left[\left(\frac{T}{100} \right)^4 - \left(\frac{T_0}{100} \right)^4 \right].$$
 (47)

Формула (11) с учетом (44)-(47), а также свойства взаимности

$$\varphi_{24}F_2 = \varphi_{42}F_4 \tag{48}$$

и замыкаемости лучистых потоков:

$$\varphi_{14} + \varphi_{12} + \varphi_{13} = 1 ; \qquad (49)$$

$$\varphi_{21} + \varphi_{23} + \varphi_{24} = 1; \tag{50}$$

$$\varphi_{41} + \varphi_{42} + \varphi_{43} = 1, \qquad (51)$$

симметричности элементарной ячейки

$$\varphi_{41} = \varphi_{43}$$
 (52)

преобразуется к виду

$$q_{\cdot_{\pi}} = c_0 \psi \left[\left(\frac{T}{100} \right)^4 - \left(\frac{T_0}{100} \right)^4 \right], \tag{53}$$

где

$$\Psi = \frac{\varepsilon x}{(1+z)\lambda} (k+z); \qquad (54)$$

87

$$k = \frac{1 - (1 - \varepsilon)(1 - \varphi_{24}) + \varphi_{42}(1 - \varepsilon)(\varphi_{14} - \varphi_{24})}{[1 - (1 - \varepsilon)(1 - \varphi_{14})][1 - (1 - \varepsilon)(1 - \varphi_{24})]},$$
(55)

х, z и λ определяются по формулам (6), (7), (9).

Угловые коэффициенты, входящие в (55), можно найти, рассматривая элементарную ячейку как систему двух параллельных одинаковых дисков диаметром d_p , насаженных на общую трубу диаметром d_0 [5]:

$$\varphi_{42} = \frac{1}{x} - \frac{1}{\pi x} \left(\arccos \frac{b}{a} - \frac{1}{2y} p \right),$$
 (56)

где

$$p = \sqrt{(a+2)^2 - (2x)^2} \arccos\left(\frac{b}{xa}\right) + b\arcsin\left(\frac{1}{x}\right) - \frac{\pi a}{2};$$
 (57)

$$a = y^2 + (x^2 - 1);$$
 (58)

$$b = y^2 - (x^2 - 1); (59)$$

х и у находятся по формулам (7) и (8).

Коэффициенты φ_{24} и φ_{14} определяются из (48) и (43) с учетом соотношений (51) и (52), а также (7) и (8):

$$\varphi_{24} = \varphi_{42} x ; (60)$$

$$\varphi_{14} = \left(1 - \varphi_{42}\right) \frac{2xy}{\left(x^2 - 1\right)}.$$
(61)

Оценки показывают, что для наиболее практически важных случаев, когда $x = \frac{d_p}{d_0} \ge 1.6$, а $y = \frac{t}{d_0} \le 0.25$, формула (55), используемая для расчета k, может быть упрощена и с точностью до слагаемого $\le 10^{-2}$ представлена в следующем виде:

$$k \cong \frac{1}{1 - (1 - \varepsilon)(1 - \varphi_{14})}.$$
(62)

Как следует из формулы (53), величина ψ определяет эффективность лучистого теплообмена оребренной поверхности с окружающей средой. Она определяется, в свою очередь, геометрическими и радиационными параметрами оребренной поверхности трубы, т. е. относительными значениями диаметра оребрения $x = \frac{d_p}{d_0}$, межреберного расстояния $y = \frac{t}{d_0}$, толщины ребра $z = \frac{\delta}{t}$ и степенью черноты поверхности металла трубы є. Зависимость величины ψ от параметров x, y, z и є при расчете k по

точной (55) и приближенной (62) формулам представлена на рис. 2-5. При этом в качестве базовой была принята труба со следующими параметрами: $d_0 = 27$ мм; $d_p = 56$; t = 3; $\delta = 0,75$ мм. Зависимости ψ от x, y, z на рис. 2-4 получены при $\varepsilon = 0,19$, соответствующей степени черноты шероховатой окисленной алюминиевой поверхности [3].

Рис. 2. Зависимость величины ψ от относительного диаметра оребрения *х*: 1 – точное; 2 – приближенное решения

Рис. 3. Зависимость величины ψ от относительного шага оребрения у: 1 – точное; 2 – приближенное решения

Рис. 4. Зависимость величины ψ от относительной толщины ребра *z*: 1 – точное; 2 – приближенное решения

Рис. 5. Зависимость величины ψ от степени черноты поверхности металла трубы є: 1 – точное; 2 – приближенное решения

Как следует из рис. 2–5, величина ψ , рассчитанная с помощью точной формулы (55), монотонно убывает с ростом относительного диаметра оребрения x и возрастает с увеличением относительного межреберного расстояния y, толщины ребра z и степени черноты поверхности металла ε .

Расчетным путем установлено, что заметное (более 2 %) отклонение значений ψ , полученных с использованием точной (55) и приближенной (62) формул, наблюдается при относительных диаметре оребрения $x \le 1,6$ и межреберном расстоянии $y \ge 0,3$.

ЛИТЕРАТУРА

1. Б л о х А. Г. Основы теплообмена излучением. – М.; Л.: Государственное энергетическое издательство, 1962. – 331 с.

2. Блох А. Г., Журавлев Ю. А., Рыжков Л. Н. Теплообмен излучением. - М.: Энергоатомиздат, 1991. - 432 с.

3. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. – М.: Энергоиздат, 1981. – 416 с.

4. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление: Справ. пособие. – М.: Энергоатомиздат, 1990. – 367 с.

5. Сперроу Э. М., Сесс Р. Д. Теплообмен излучением. – Л.: Энергия, 1971. – 294 с.

6. О с н о в ы расчета и проектирования теплообменников воздушного охлаждения: Справ. / А. Н. Бессонный, Г. А. Дрейцер, В. Б. Кунтыш и др.; Под общ. ред. В. Б. Кунтыша, А. Н. Бессонного. – СПб.: Недра, 1996. – 512 с.

7. Мартыненко О. Г., Соковишин Ю. А. Свободно-конвективный теллообмен: Справ. – Мн.: Наука и техника, 1982. – 400 с.

8. Самородов А. В., Рощин С. П., Кунтыш В. Б. Лучистый теплообмен одиночной ребристой трубы с окружающей средой // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. – Архангельск: АГТУ, 1997. – Вып. 2. – С 102–103.

Представлена кафедрой промышленной теплоэнергетики

Поступила 24.01.2000