вывод

Рассмотренный метод позволяет решить задачу определения вида и места повреждения оборудования ОРУ в автоматическом режиме, что существенно снижает время, необходимое для восстановления нормального режима.

ЛИТЕРАТУРА

1. Разработка и внедрение информационно-вычислительной системы открытого распределительного устройства электростанций / Р. И. Белоусова, В. Х. Сопьяник, А. А. Жамойдин и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1998. – № 5. – С. 34–40.

2. С о п ь я н и к В. Х. Регистрация аварийных ситуаций и анализ поведения устройств защит в аварийном режиме // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1998. – № 2. – С. 26–29.

Поступила 30.06.2000

УДК 621.316.925

РАСЧЕТ И АНАЛИЗ НА ПЭВМ ПРОЦЕССОВ В ТРАНСФОРМАТОРАХ ТОКА С УЧЕТОМ ИХ ХАРАКТЕРИСТИК НАМАГНИЧИВАНИЯ И ВТОРИЧНЫХ НАГРУЗОК

Канд. техн. наук СОПЬЯНИК В. Х., инж. ЖУК Е. М.

Научно-исследовательское и проектное республиканское унитарное предприятие «БелТЭИ»

Одним из условий повышения надежности функционирования устройств релейной защиты (РЗ) является обеспечение допустимой погрешности работы трансформаторов тока (ТТ).

Рост токов короткого замыкания (КЗ) в энергосистемах вынуждает периодически проверять ТТ на допустимую погрешность. Существующие инженерные методы расчета процессов в ТТ и их погрешностей работы громоздки, требуют значительных трудозатрат и не обеспечивают учет реальных характеристик намагничивания, схем соединения их вторичных обмоток [1].

Повышение точности расчета погрешностей работы TT и процессов в токовых цепях устройств P3 как в установившихся, так и переходных режимах обеспечивается разработанными и реализованными на ПЭВМ математическими моделями TT и трехфазных токовых цепей устройств P3 с учетом реальных характеристик намагничивания (XH) TT, схем соединения вторичных обмоток TT и реальных вторичных нагрузок на TT [2, 3].

Характеристики намагничивания TT рассчитываются по амплитудным вольт-амперным характеристикам, снятым в соответствии с рекомендациями [4, 5]. Более точно рассчитать XH TT с меньшими трудозатратами возможно путем цифрового осциллографирования вольт-амперных характеристик TT, которые могут быть использованы также и для диагностики TT в части витковых замыканий.

Цифровые методы снятия вольт-амперных характеристик TT, расчета их амплитудных XH, программные реализации математических моделей TT и трехфазных токовых цепей устройств P3 на ПЭВМ являются основой цифровой методики, обеспечивающей высокую точность расчета погрешностей работы TT, электромагнитных процессов в них и токовых цепях P3 с учетом их реальных XH, схем соединения вторичных обмоток TT и вторичных нагрузок при заданных токах K3.

В данной статье приведены результаты расчетов, полученные методом математического моделирования TT с реализацией на ПЭВМ, и проанализированы влияния XH TT, их аппроксимаций, а также величин вторичных нагрузок на процессы в TT и их погрешности работы. В качестве исследуемого объекта рассматривался TT типа TФНД-110-600/5 со следующими конструктивными данными: $W_1 = 3$ вит.; $W_2 = 359$ вит.; S = 0,00138 м²; l = 0,935 м; $R_{of} = 0,46$ Ом; $X_s = 0,5$ Ом. Вторичная нагрузка на TT принималась исходя из кривых предельной кратности при $I_{\kappa_3} = 10I_{\text{ном}}$, $Z_{\mu} = 3,6$ Ом $(1 - R_{\mu} = 2,88$ Ом; $X_{\mu} = 2,16$ Ом и $2 - R_{\mu} = 3,6$ Ом).

Переходные и установившиеся процессы в TT рассчитывались при отсутствии остаточной индукции. Постоянная времени затухания апериодической составляющей тока K3 равна 0,05 с. Первичный ток TT задавался зависимостью вида

$$i = \sqrt{2} I \sin(\omega t + \alpha) + I_{an} \exp(-\frac{t}{t_k}).$$
(1)

При проведении расчетов на ПЭВМ XH TT H = f(B) аппроксимировалась следующими зависимостями:

кусочно-параболической (КПХН) [2], что исключало изломы в аппроксимации характеристики намагничивания и обеспечивало непрерывность производной *dB/dt*;

кусочно-линейной, состоящей из трех линейных участков на квадрант (CXH-3). Первый вертикальный участок аппроксимации XH совпадал с осью абсцисс, на которой откладывались значения индукции. Второй линейный участок аппроксимировал XH в месте ее изгиба и начинался от оси абсцисс до пересечения с линейной (верхней) частью XH;

кусочно-линейной, состоящей из двух линейных участков на квадрант (СХН-2), первый (вертикальный) участок ХН совпадал с осью абсцисс, на которой откладывались значения индукции, а начало второго линейного участка ХН определялось путем линейной экстраполяции ХН до пересечения с осью абсцисс.

С целью анализа влияния XH, их аппроксимаций и вторичных нагрузок на погрешности работы TT и процессы в нем задавались XH сталей 3411 (Э-310) и 1512 (Э-42) с учетом активно-индуктивной $R_{\rm H} = 2,88$ Ом; $X_{\rm H} = 2,16$ Ом и активной $R_{\rm H} = 3,6$ Ом вторичных нагрузок.

Результаты расчетов полных и токовых погрешностей работы TT в переходных и установившихся режимах приведены в виде их численных значений (табл. 1 и 2) и кривых на рис. 1 (полные погрешности – кривые 1—5, токовые погрешности – 1'—5'; кривые 1, 1' – характеристика намагничивания стали 3411 аппроксимировалась КПХН; 2, 2' – СХН-3; 3, 3' — СХН-2;

4, 4' – КПХН, вторичная нагрузка ТТ чисто активная; 5, 5' – характеристика намагничивания стали 1512 аппроксимировалась КПХН, нагрузка активноиндуктивная).

Таблица І

	Марка стали и тип аппроксимации ХН						
	Э-310 КПХН	Э-310 СХН-3	Э-310 СХН-2	Э - 310 КПХН	Э-42 КПХН		
<i>t</i> , c	Вторичная нагрузка, Ом						
	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 3.6$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$		
	Полные погрешности работы ТТ <i>Е</i> , %						
0,02	84,25	84,06	84,32	92,19	88,32		
0,04 ·	90,81	90,77	91,59	93,91	89,90		
0,06	76,52	76,50	77,46	81,35	75,68		
0,08	60,13	60,07	61,21	65,34	59,65		
0,10	45,38	45,21	46,54	49,85	47,01		
0,12	33,55	33,23	34,70	36,81	40,02		
0,14	24,64	24,04	25,67	26,84	36,68		
0,16	18,28	17,42	18,94	19,83	35,22		
0,18	14,02	13,45	13,98	15,23	34,63		
0,20	11,31	11,26	10,35	12,42	34,42		
0,22	9,70	10,35	7,67	10,75	34,37		
0,24	8,84	9,98	5,72	9,94	34,37		
0,26	8,38	9,81	4,50	9,59	34,39		
0,28	8,20	9,75	3,95	9,44	34,42		
0,30	8,14	9,74	3,72	9,39	34,43		

Полные погрешности работы ТТ типа ТФНД-110 600/5

Рис. 1. Полные и токовые погрешности работы ТТ в переходных и установившихся режимах при различных характеристиках намагничивания магнитопроводов ТТ и их аппроксимациях

Результаты анализа полных и токовых погрешностей показывают, что в режиме глубокого насыщения (E = 45 % и F = 25 % и более) погрешности работы ТТ практически мало зависят от вида аппроксимации и XH стали. При чисто активной вторичной нагрузке ТТ полная погрешность несколько выше, чем при активно-индуктивной, а токовая погрешность наоборот меньше при чисто активной вторичной нагрузке. Полные погрешности работы ТТ для всех рассмотренных случаев выше, чем токовые погрешности. По мере выхода ТТ из насыщения ХН стали ТТ и ее аппроксимация существенно влияют на результаты расчета погрешностей работы ТТ. Если принять за истинные значения полных, токовых погрешностей работы ТТ результаты расчетов, полученные при аппроксимации ХН с помощью КПХН, то при аппроксимации СХН-2 точность результатов расчета величин погрешностей работы TT, особенно в установившемся режиме, существенно ухудшается. Более значительное влияние на величины погрешностей работы ТТ в установившихся режимах оказывают ХН сталей, из которых изготовлен ТТ, величины вторичных нагрузок и их активноиндуктивный характер.

Таблица 2

	Марка стали и тип аппроксимации ХН						
	Э-310 КПХН	Э-310 СХН-3	Э-310 СХН-2	Э-310 КПХН	Э-42 КПХН		
<i>t</i> , c	Вторичная нагрузка, Ом						
	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$	$R_{\rm H} = 3,6$	$R_{\rm H} = 2,88$ $X_{\rm H} = 2,16$		
	Полные погрешности работы ТТ Е, %						
0,02 0,04 0,06 0,08 0,10 0,12	69,15 75,04 54,81 37,66 25,30 16,98	68,86 74,99 54,79 37,62 25,22 16,85	69,06 75,79 55,34 38,06 25,59 17,11	66,11 69,84 46,40 28,35 16,54 9,44	75,96 74,41 54,54 37,88 28,19 24,72		
0,14 0,16 0,18 0,20 0,22 0,24 0,26 0,28 0,30	11,58 8,25 6,38 5,36 4,82 4,58 4,45 4,41 4,40	11,29 7,85 6,32 5,63 5,36 5,31 5,29 5,31 5,34	11,50 7,79 5,31 3,65 2,53 1,76 1,39 1,31 1,29	5,47 3,37 2,31 1,78 1,51 1,38 1,35 1,33 1,33	23,55 23,15 23,02 22,99 23,00 23,01 23,03 23,05 23,06		

Токовые погрешности работы ТТ типа ТФНД-110 600/5

Результаты влияния XH, их аппроксимаций и активно-индуктивной вторичной нагрузки на процессы в TT представлены на рис. 2 в виде кривых первичного приведенного тока (кривая 1) и вторичных токов в TT при КПХН стали 3411 (Э-310) аппроксимации и активно-индуктивной вторичной нагрузке (кривая 2) и чисто активной вторичной нагрузке (кривая 3), при аппроксимации СХН-2 и активно-индуктивной вторичной нагрузке (кривая 4), при аппроксимации КПХН стали 1512 и активно-индуктивной вторичной нагрузке (кривая 5). Анализ кривых вторичных токов TT показывает, что их характер в режиме насыщения TT зависит от величины и активно-индуктивного характера вторичной нагрузки и в меньшей мере от аппроксимации XH. Следует заметить, что при чисто активной вторичной нагрузке в режиме насыщения TT вторичный ток резко изменяется, а при активно-индуктивной – затухает более плавно за счет процессов в индуктивности.

Рис. 2. Переходные процессы в TT при различных характеристиках намагничивания магнитопроводов TT и их аппроксимациях

В [1, 5] при анализе влияния аппроксимаций типа СХН отмечается, что в точке излома ХН производная dB/dt изменяется скачкообразно по сравнению с производной при аппроксимации типа КПХН. Однако степень влияния таких изменений производной на ЭДС вторичной обмотки ТТ не отражена. Проанализируем эти влияния путем использования аппроксимаций типа КПХН и СХН-2 и вычисления мгновенных значений ЭДС вторичной обмотки ТТ, которые рассчитываются по следующей зависимости и учитывают производную dB/dt:

$$W_2 S \frac{dB}{dt} = e(t). \tag{2}$$

На рис. За представлены кривые ЭДС вторичной обмотки TT, построенные по результатам расчета на ПЭВМ переходных и установившихся процессов в TT при аппроксимации КПХН (кривая 1) и СХН-2 (кривая 2) при активно-индуктивной вторичной нагрузке. На рис. Зб приведены аналогичные процессы при чисто активной вторичной нагрузке.

Анализ кривых e(t) показывает, что производная dB/dt в месте излома XH при аппроксимации CXH-2 в режиме глубокого насыщения несколько влияет на величину амплитуды ЭДС и характер изменения e(t). На величинах действующих значений ЭДС эти процессы практически не сказываются.

По результатам исследований влияния ХН ТТ и их аппроксимаций на погрешности работы ТТ, переходные и установившиеся процессы в них можно сделать следующие заключения:

разработанные и реализованные на ПЭВМ в виде программ математические модели токовых цепей с ТТ обычного и каскадного исполнения позволяют производить уточненные расчеты полных, токовых погрешностей работы ТТ в переходных и установившихся процессах в ТТ и токовых цепях РЗ с учетом реальных амплитудных характеристик намагничивания TT, их вторичных нагрузок и схем соединения вторичных обмоток TT и отказаться от упрощенных расчетов на основе аппроксимаций типа ПХН, CXH и обобщенных характеристик намагничивания TT;

Рис. 3. ЭДС вторичной обмотки ТТ при: а – активно-индуктивной вторичной нагрузке и аппроксимации кривой намагничивания ТТ КПХН (кривая 1), СХН-2 (кривая 2); б – активной вторичной нагрузке и аппроксимации кривой намагничивания ТТ КПХН (кривая 1), СХН-2 (кривая 2)

как XH TT, так и их аппроксимации типа СХН, ПХН, величины вторичных нагрузок и их активно-индуктивный характер влияют на точность результатов расчета погрешностей работы TT в переходных и установившихся процессах в них;

для повышения точности результатов расчета погрешностей работы TT и процессов во вторичных цепях P3 паспорта TT должны содержать их конструктивные параметры W_1 , W_2 , S, l, R_{o6} , X_s и амплитудные действующие XH или вольт-амперные характеристики, что позволит в эксплуатационных условиях использовать их для создания паспорта установки TT в электрической схеме, включающего уточненные расчеты на ПЭВМ погрешностей работы TT с учетом реальных вторичных нагрузок, схем соединения вторичных обмоток TT, величин токов K3, и осуществить диагностику TT на наличие короткозамкнутых витков;

указанные мероприятия являются условиями контроля и обеспечения допустимой погрешности работы ТТ и повышения надежности функционирования устройств РЗ. 1. Королев Е. П., Либерзон Э. М. Расчет допустимых нагрузок в токовых цепях релейной защиты. – М.: Энергия, 1980. – 208 с.

2. Романюк Ф. А., Новаш В. И. Информационное обеспечение вычислительного эксперимента в релейной защите и автоматике энергосистем. – Мн.: ВУЗ-ЮНИТИ, 1998. – 174 с.

3. Сопьяник В. Х. Расчет и анализ переходных и установившихся процессов в трансформаторах тока и токовых цепях устройств релейной защиты. – Мн.: БГУ, 2000. – 143 с.

4. В а в и н В. Н., Голубев М. Л. Инструкция по проверке трансформаторов тока, используемых в схемах релейной защиты. – М.: Энергия, 1977. – 88 с.

5. Электрические цепис ферромагнитными элементами в релейной защите / А. Д. Дроздов, А. С. Засыпкин, С. Л. Кужеков и др. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 256 с.

Поступила 20.03.2001

УДК 621.313.39

ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ КАК СРЕДСТВО РЕГУЛИРОВАНИЯ ПРОИЗВОДИТЕЛЬНОСТИ НАГНЕТАТЕЛЕЙ

Докт. техн. наук, проф. РУСАН В. И.

РУП «БелНИИагроэнерго»

Асп. КЛЕБАНОВ Е. А.

Белорусский аграрный технический университет

Одним из направлений в области энергосбережения является внедрение преобразователей частоты (ПЧ) для регулирования скорости вращения электродвигателей нагнетателей (насосов, вентиляторов, компрессоров). В связи со стремительным развитием электроники, и микропроцессорной техники в частности, данное направление получило в последнее время особое развитие. О достоинствах применения регулируемого электропривода в системах водоснабжения и вентиляции написано много работ, аргументирующих целесообразность данного подхода к регулированию производительности нагнетателей. Однако мы остановимся на экономическом аспекте вопроса и попытаемся выявить критерии экономической целесообразности внедрения ПЧ, опустив при этом несомненные технологические преимущества данного подхода.

Оценка экономической эффективности сводится, в сущности, к исследованию энергетических режимов работы нагнетателя, для определения которых необходимо в комплексе изучить изменение энергетических характеристик самого нагнетателя и параметров сети, на которую он работает. Известно, что водопроводные сети представляют собой сложные объекты с постоянно изменяющимися во времени параметрами. Данное обстоятельство неразрывно связано с изменением КПД нагнетателя, работающего