## ИССЛЕДОВАНИЯ ТЕПЛОАЭРОДИНАМИЧЕСКИХ И ГАБАРИТНО-МАССОВЫХ ХАРАКТЕРИСТИК ШАХМАТНЫХ СТЕСНЕННЫХ ПУЧКОВ ТРУБ СО СПИРАЛЬНО-НАКАТНЫМИ РЕБРАМИ

Докт. техн. наук, проф. КУНТЫШ В. Б., канд. техн. наук, доц. СТЕНИН Н. Н.

Архангельский государственный технический университет

К настоящему времени достаточно полно изучены теплоотдача и гидравлическое сопротивление внешнеобтекаемых шахматных пучков из труб со спиральными и кольцевыми ребрами, в которых максимальная скорость потока находится в сжатом поперечном (фронтальном) сечении пучка. Шахматные оребренные пучки с максимальной скоростью в сжатом диагональном сечении называются стесненными [1], и для них характерно свободное расположение труб в поперечных рядах с тесным поджатым расположением их в продольных рядах. При таких компоновках труб при обтекании их потоком появляются новые гидродинамические явления, которые не наблюдаются в традиционных шахматных компоновках. Вместе с тем расчетные критериальные уравнения теплоотдачи и аэродинамического сопротивления фактически построены по опытным данным традиционных пучков из-за ограниченных исследований стесненных пучков: в [1] приводятся результаты по 5, в [2] – по 12, в [3] – по 4, в [4] – по 5 пучкам. Обобщенные уравнения для расчета теплоотдачи и сопротивления стесненных оребренных пучков в широком интервале изменения компоновочных характеристик не использовались по указанной причине. Кроме теоретического, исследование таких пучков обусловливается практическим интересом ввиду их распространенного применения в теплосберегающих установках, например в теплоуловителях сушильной части бумаго- и картоноделательных машин, теплоутилизаторах сушильных камер.

Цель работы — дальнейшее расширение и накопление банка опытных данных по теплоотдаче и сопротивлению шахматных стесненных пучков из оребренных труб в поперечном потоке воздуха.

Объектом экспериментального исследования являлись шахматные пучки, собранные из биметаллических круглых труб с накатными алюминиевыми ребрами  $d \times d_0 \times h \times s \times \Delta = 55,85 \times 25,85 \times 15,0 \times 2,56 \times 0,75$ мм. Коэффициент оребрения трубы  $\varphi = 19,9$ . Ребра накатаны на стальной несушей трубе наружного диаметра  $d_{\rm H} = 25$  мм с толщиной стенки  $\delta = 2$  мм. Трубы снаружи омывались принудительным перпендикулярным потоком воздуха с начальной температурой 15...18 °C. Для проведения опытов использовали аэродинамическую трубу [4] разомкнутого типа с поперечным сечением рабочего участка 350 × 350 мм, работающую по нагнетательной схеме.

Теплоотдачу определяли методом локального теплового моделирования при помощи одного пароэлектрического калориметра [4], последовательно устанавливаемого в середине 1-го, 2-го, 3-го, 4-го поперечных рядов пучка. Теплоотдачу 5-го и 6-го рядов принимали равной теплоотдаче стабилизированных рядов, которыми в исследованных пучках являлись третий и последующий [4, 5]. Температура кипения воды в калориметре составляла ≈ 100 °С. Приведенный коэффициент α<sub>i</sub> теплоотдачи *i*-го поперечного ряда пучка определяли по конвективному тепловому потоку, отнесенному к полной наружной поверхности F оребрения трубы-калориметра и арифметической разности средних температур трубы у основания ребер и потока воздуха перед пучком в рабочем участке. Приведенный средний коэффициент теплоотдачи  $\alpha$  вычисляли арифметическим усреднением коэффициента теплоотдачи  $\alpha_i$  всех рядов пучка.

Компоновочными параметрами шахматного пучка являются поперечный  $S_1$ , продольный  $S_2$ , диагональный  $S_2'$  шаги расположения труб в решетке; относительные поперечный  $\sigma_1 = S_1/d$ , продольный  $\sigma_2 = S_2/d$ , диагональный  $\sigma_2' = S_2'/d$  шаги; коэффициент компактности  $\Pi = \pi d_0 \varphi/(S_1 S_2)$ , м<sup>2</sup>/м<sup>3</sup>; конструктивный симплекс, иногда называемый коэффициентом формы пучка, вычисляемый без учета влияния размеров ребер трубы по соотношению

$$\beta = (S_1 - d_0) / (S_2' - d_0) \tag{1}$$

или с учетом размеров ребер

$$\beta' = \left(S_1 - d_0 - \frac{2h\Delta}{s}\right) / \left(S'_2 - d_0 - \frac{2h\Delta}{s}\right),\tag{2}$$

где  $d_0 = d - 2h - диаметр$  трубы у основания ребер; d – наружный диаметр ребер; h, s,  $\Delta$  – высота, шаг и средняя толщина ребра.

Вычисление коэффициента  $\beta$  по (1) производится аналогично его расчету в гладкотрубных пучках, где  $\beta = (S_1 - d_H)/(S_2' - d_H)$ .

Коэффициенты загромождения сжатого поперечного и диагонального сечений оребренного пучка вычисляли по формулам:

$$\chi_{\phi p} = 1 - \frac{1}{S_{I}} \left( d_{0} + \frac{2h\Delta}{s} \right); \tag{3}$$

$$\chi_{\mu} = \frac{1}{S_1} \left[ 2(S_2' - d_0) - \frac{4h\Delta}{s} \right].$$
(4)

Скорости воздуха в поперечном *w* и диагональном *w*<sub>д</sub> сжатых сечениях связаны между собой соотношением

$$w_{\rm d} = w \chi_{\rm dp} / \chi_{\rm d}. \tag{5}$$

Анализ (3)–(5) показывает, что для пучка с  $\chi_{\rm dp} > \chi_{\rm d}$  наиболее загроможденным (сжатым) является диагональное сечение, в котором скорость воздуха наибольшая. Следовательно, шахматные пучки с  $\chi_{\rm dp} > \chi_{\rm d}$ относятся к группе стесненных. При  $\chi_{\rm dp} = \chi_{\rm d}$  скорость потока в сжатых поперечном и диагональном сечениях одинакова, достигается геометрическая равнопроходность пучка в этих сечениях. Каждому значению  $\chi$ соответствует единственное значение конструктивного симплекса  $\beta$ пучка. У гладкотрубных пучков геометрическая равнопроходность достигается всегда при  $\beta = 2$ , тогда как в равнопроходных оребренных пучках всегда  $\beta < 2$ , и в общем для таких пучков значение  $\beta$  = var, так как даже при постоянных величинах шагов  $S_1$ ,  $S_2$  оно зависит от геометрических размеров ребер.

Опыты проведены с пучками I, II, III, у которых  $S_1 = 117$  мм,  $\sigma_1 = 2,09$ , а  $\chi_{\rm dp} = 0,709$ . В нечетных поперечных рядах каждого пучка установлены по три цельных трубы, а в четных — по две, но с боковых сторон у этих рядов расположены полутрубы, обеспечивающие одинаковое по воздуху сечение каждого поперечного ряда. Конструкторско-компоновочные параметры пучков даны в табл. 1.

Таблица 1

| Параметр или   | Ряд | Номер пучка |             |             |  |  |  |  |
|----------------|-----|-------------|-------------|-------------|--|--|--|--|
| коэффициент    |     | I II        |             | III         |  |  |  |  |
| $S_2, MM$      |     | 53,79       | 37,52       | 29,41       |  |  |  |  |
| $S_2', MM$     |     | 79,5        | 69,5        | 65,5        |  |  |  |  |
| $\sigma_2$     |     | 0,963       | 0,672       | 0,526       |  |  |  |  |
| $\sigma_2'$    |     | 1,423       | 1,244       | 1,173       |  |  |  |  |
| $\chi_{\pi}$   |     | 0,776       | 0,605       | 0,537       |  |  |  |  |
| $\beta$        |     | 1,7         | 2,09        | 2,30        |  |  |  |  |
| $\beta'$       |     | 1,836       | 2,362       | 2,669       |  |  |  |  |
| $\Pi, M^2/M^3$ |     | 257,0       | 367,0       | 470,0       |  |  |  |  |
| $C_i \cdot 10$ | 1   | 1,343/1,343 | 1,800/1,800 | 1,911/1,620 |  |  |  |  |
|                | 2   | 0,508/0,508 | 0,891/0,800 | 0,907/0,739 |  |  |  |  |
|                | 3-6 | 0,576/0,576 | 0,891/0,825 | 0,907/0,739 |  |  |  |  |
| n <sub>i</sub> | 1   | 0,60        | 0,58        | 0,58        |  |  |  |  |
|                | 2-6 | 0,72        | 0,67        | 0,67        |  |  |  |  |
| C-10           | -   | 0,638/0,638 | 0,966/0,882 | 0,983/0,802 |  |  |  |  |
| n              |     | 0,70        | 0,66        | 0,66        |  |  |  |  |
| B              |     | 20,06/20,06 | 35,06/27,06 | 52,85/33,41 |  |  |  |  |
| m              |     | 0,26        | 0,32        | 0,36        |  |  |  |  |

Примечание. Данные в числителе относятся к обработке результатов по скорости в сжатом поперечном сечении, в знаменателе – по максимальной скорости в соответствующем сечении пучка.

Равнопроходность пучков для исследованных труб с шагом  $S_1 = 117$  мм наступает при  $S_2' = 75,6$  мм, а  $\beta = 1,83$ . Следовательно, опытные пучки II, III являются стесненными. Пучок I исследовали в качестве базового для сравнительного анализа результатов по стесненным пучкам. Учет влияния размеров ребер трубы на изменение величины конструктивного симплекса сопровождается увеличением ее на 8...16 % (табл. 1) (значения  $\beta'$  по сравнению с  $\beta$ ). Однако по сложившейся практике расчетов, и для предельного перехода [1] от оребренных пучков к гладкотрубным принято вычислять  $\beta$  по (1).

Опытные данные по приведенным коэффициентам теплоотдачи и аэродинамического сопротивления пучка обрабатывали в числах подобия:

 $Nu_i = \alpha_i d_0 / \lambda;$   $Nu = \alpha d_0 / \lambda;$   $Re = w d_0 / \nu$  или

Re = 
$$w_{\Pi}d_0/v$$
; Eu =  $\Delta p/(\rho w^2)$  или Eu =  $\Delta p/(\rho w_{\Pi}^2)$ ,

где  $\Delta p$  — перепад статического давления воздуха в пучке, Па.

Физические свойства воздуха λ, ν, ρ принимали по его средней температуре в пучке.

Результаты опытов обобщены критериальными уравнениями подобия в степенной форме:

$$Nu_i = C_i \operatorname{Re}^{n_i}; (6)$$

$$Nu = C \operatorname{Re}^{n}; \tag{7}$$

$$Eu = BRe^{-m}.$$
 (8)

Значения констант C<sub>i</sub>, C, B, n<sub>i</sub>, n, m даны в табл. 1. Числа Eu вычислены для шести рядов.

Максимальная относительная среднеквадратичная погрешность определения чисел Nu<sub>i</sub>, Re, Eu не превышала 3,5; 3,2 и 4,1 % соответственно. Среднеквадратичная ошибка при расчете значений  $C_i$ , C, B,  $n_i$ , n, m не превышает 2,8 %.

Уравнения (6)–(8) действительны в диапазоне  $\text{Re} = (2,5...25) \cdot 10^3$  при условии обработки данных по скорости воздуха *w* в сжатом поперечном сечении пучка.

На рис. 1, 2 приведены экспериментальные материалы по теплоотдаче различных рядов, а в нижней части этих рисунков — средней теплоотдаче пучков I, II, III для случаев вычисления значения чисел Re по скорости воздуха в сжатом поперечном и диагональном сечении пучков. Анализ расположения линий  $Nu_i = f$  (Re) указывает на стабилизацию теплоотдачи в стесненных пучках II, III со второго ряда, а теплоотдача 1-го ряда пониженная, и с ростом значений Re расхождение в теплоот-





Рис. 1. Теплоотдача пучков по скорости воздуха в сжатом поперечном сечении: 1, 11, 111 – номера пучков; 1, 2, 3, 4 – опытные точки для 1-, 2-, 3-, 4-го рядов пучка; 5 – по (6); 6 – средняя теплоотдача пучка по (7)

Рис. 2. Теплоотдача пучков по скорости воздуха в сжатом диагональном сечении (обозначения те же, что на рис. 1)

даче рядов увеличивается, достигая при Re =  $20 \cdot 10^3$  величины в 20,7 и 15,7 % соответственно для пучков II, III. Полученная картина изменения теплоотдачи по рядам пучков не зависит от выбора скорости воздуха в числе Re, однако отличается от ранее полученных данных для стесненных пучков с близкими параметрами относительных шагов  $\sigma_1$  и  $\sigma_2$ , но собранных из труб такой же конструкции с другими геометрическими размерами ребер [3]. Стабилизация теплоотдачи в стесненных пучках наступала с 3-го ряда [3], а теплоотдача 2-го ряда занимала промежуточное положение между аналогичными характеристиками 1-го и 3-го рядов. Для установления и объяснения причины расхождения необходимо дальнейшее накопление опытных данных по тепловым характеристикам стесненных пучков.

В базовом пучке I теплоотдача стабилизируется с 3-го ряда, теплоотдача 2-го ряда меньше на 13 % во всем диапазоне Re, а интенсивность теплоотдачи 1-го ряда при Re =  $3 \cdot 10^3$  составляет 87 % от теплоотдачи стабилизированного ряда, но при Re =  $20 \cdot 10^3$  разрыв в уровнях теплоотдачи достигает 71 %. Полученные результаты хорошо согласуются с исследованиями пучков близких компоновочных параметров [1, 3].

Линия теплоотдачи на рис. 1, 2 стабилизированных рядов располагается более круто по сравнению с аналогичной характеристикой 1-го ряда, что является отражением повышения уровня турбулентности межтрубного потока воздуха, генерируемой 1-м рядом пучка, исполняющего роль турбулизирующей решетки. При обработке опытных данных по скорости воздуха в сжатом поперечном сечении теплоотдача 1-го ряда пучков II, III при Re = idem выше теплоотдачи такого ряда базового пучка. Например, для  $Re = 20 \cdot 10^3$  рост теплоотдачи составил 10 и 17 % соответственно для пучков II и III по сравнению с теплоотдачей 1-го ряда пучка I. В случае обработки данных по максимальной скорости воздуха, которая в стесненных пучках находится в сжатом диагональном сечении, картина изменения теплоотдачи 1-го ряда несколько иная. Для  $Re = 20 \cdot 10^3$  в пучке II теплоотдача повысилась на 10 %, что естественно из-за поджатия потока в кормовой области 2-м рядом труб вследствие меньшего значения  $S_2$  по сравнению с этим параметром пучка I. Но в пучке III теплоотдача 1-го ряда снизилась приблизительно до значений теплоотдачи такого ряда базового пучка I, несмотря на дальнейшее уменьшение шага S<sub>2</sub>. Схожая картина относительного изменения теплоотдачи при обработке опытов по w и w<sub>л</sub> характерна также для стабилизированных рядов.

В нижней части рис. 1, 2 изображены графики средней теплоотдачи пучков I...III, соответствующие функциональной зависимости Nu = = f(Re). Анализ показывает, что линии средней теплоотдачи пучков расслаиваются независимо от выбора определяющей скорости, причем величина расслоения приблизительно одинакова при вычислении значения Re по w или  $w_{d}$ , но порядок относительного расположения линий теплоотдачи меняется. При обобщении по w для Re = idem меньшие значения Nu характерны для пучка I, далее располагаются данные для пучков II и III, причем числа Nu стесненных пучков различаются между собой не более 1,7 %. В случае использования при обобщении скорости  $w_{d}$  значения Nu для базового пучка наибольшие и превышают соответствующие значения Nu пучка III в среднем на 15 %. Числа Nu пучка II на 10 % больше соответствующих значений для пучка III. Полученный характер изменения средней теплоотдачи стесненных пучков не противоречит результатам исследований [2, 3]. Опытные данные для шести рядов по аэродинамическому сопротивлению пучков I...III нанесены на рис. 3. Линии сопротивления пучков имеют различный наклон, которому соответствуют разные значения по-

казателя степени *т* в (8). С ростом симплекса в абсолютное значение также увеличивается (табл. 1). При вычислении Re и Eu по скорости w для одинаковых Re численные значения Еи стесненных пучков возрастают, а в случае использования скорости w<sub>л</sub> значения Еи уменьшаются. Наглядное представление об этом дают следующие пропорции: при расчете по w для  $Re = 3 \cdot 10^3 - Eu/Eu_I - = 1 : 1.08 :$ 1,18; для Re = 20 · 10<sup>3</sup> - Eu/Eu<sub>I</sub> -=1: 0,965: 0,978; при расчетах по w<sub>п</sub> для этих же чисел Re получается соответственно соотношение 1 : 0,836 : 0,748 и 1 : 0,744 : 0,618. Здесь Еи<sub>1</sub> – значение числа Эйлера для пучка I, а Eu - то же, для пучков I, II, III.



Рис. 3. Аэродинамическое сопротивление пучков: I, II, III — номера пучков; I, 2, 3 опытные точки по скорости w; 4, 5 — то же, по  $w_{n}$ ; 6 — то же, по (8)

Средняя теплоотдача пучков I...III (рис. 4а) с разбросом опытных точек, не превышающим ± 5 %, обобщается уравнением

$$Nu = 0.0788\beta^{0.15} Re^{0.67},$$
(9)

которое действительно для β = 1,7...2,3 и использования в качестве определяющей скорости w.



Рис. 4. Обобщение опытов по: а – средней теплоотдаче и б – влиянию параметра β на интенсивность теплоотдачи пучка по скорости воздуха в сжатом поперечном сечении; 1, 2, 3 – данные для пучков I, II, III; 4 – по (9)

При выборе определяющей скорости  $w_{d}$  средняя теплоотдача (рис. 5а) этих же пучков с разбросом опытных точек не более ± 5 % обобщается уравнением



Рис. 5. Обобщение опытов по: а – средней теплоотдаче и б – влиянию параметра  $\beta$  на интенсивность теплоотдачи пучка по скорости воздуха в сжатом диагональном сечении; 1, 2, 3 – данные для пучков I, II, III; 4 – по (10)

Рис. 46, 56 построены для  $\text{Re} = 10^4$ , на них Nu - число Нуссельта для пучков I, II, III;  $\text{Nu}_{\text{I}}$  — то же, для пучка I.

Для оценки тепловой эффективности, относительных габаритной и массовой характеристик пучков I...III была применена общеизвестная методика В. М. Антуфьева, в соответствии с которой выполнены расчеты в исследованном интервале числа Re. При одинаковой удельной затрате мощности  $N_0$ , BT/м<sup>2</sup>, на прокачку воздуха приведенный коэффициент теплоотдачи стесненных пучков II, III на 4...7 % больше теплоотдачи базового пучка I во всем диапазоне изменения  $N_0$ . При  $N_0 = idem$ интенсивность теплоотдачи пучков II, III одинакова. При вычислении относительной габаритной характеристики, представляющей отношение объемов  $V/V_{ar}$  при  $N_0$  = idem и Q = idem, за эталон принят пучок I с относительным объемом  $V_{\rm at} = 1$ . Получены следующие значения  $V/V_{\rm at}$ для пучков: II -0,66; III -0,52. Следовательно, объем пучка II на 34 %, а пучка III на 48 % меньше объема пучка I. Таким образом, стесненные пучки обладают более выгодной габаритной характеристикой по сравнению с традиционным шахматным пучком I. По относительной массовой характеристике пучки разделяются так же, как и по габаритной. Это связано с тем, что сравниваемые пучки собраны из однотипных труб, для которых масса 1 м<sup>2</sup> площади поверхности теплоотдачи b, кг/м<sup>2</sup>, одинакова.

В заключение нами выполнен анализ применимости существующих обобщенных критериальных уравнений Центрального котлотурбинного института имени И. И. Ползунова (ЦКТИ) [1], Архангельского лесотехнического института (АЛТИ) [4], Института физико-технических проблем энергетики (ИФТПЭ) АН Литовской ССР [5] и Киевского политехнического института (КПИ) совместно с ЦКТИ [6] для расчета теплоотдачи и аэродинамического сопротивления поперечно обтекаемых пучков из круглоребристых труб к исследованным опытным пучкам I...III. Сравнивали расчетные значения средних приведенных  $\alpha_p$  и опытных  $\alpha_0$  коэффициентов теплоотдачи и перепадов давления воздуха в

(10)

пучке  $\Delta p_p$  и  $\Delta p_o$ , выполненных по указанным обобщенным уравнениям и частным уравнениям (7), (8). Расчеты произведены для средней температуры воздуха 50 °C, его скоростей 1,736 и 17,36 м/с в сжатом поперечном сечении пучка, которые соответствуют концам изученного интервала по Re = 2500 и 25000. Связь приведенного коэффициента теплоотдачи  $\alpha$  с конвективным  $\alpha_k$ , коэффициент неравномерности распределения конвективной теплоотдачи по ребру  $\psi_p$ , определяющий линейный размер *l*, эквивалентный диаметр  $d_3$  наименьшего проходного сечения пучка для воздуха определяли по формулам [1]. Коэффициент эффективности *E* круглого спирального ребра находили по номограммам [4]. Поправку на локальный метод моделирования теплоотдачи вводим в значения  $\alpha_o$  по данным [1, 4]. Расчет  $d_3$  для пучка I выполняли по  $S_1$ , для пучков II, III – по  $S_2'$ . Для пучков I, II, III получено *l* = 43,22 мм. В качестве расчетной в анализируемых методиках [1, 4–6] принята средняя скорость в наименьшем проходном сечении пучка.

Величину отклонения между расчетными и опытными значениями теплоотдачи и сопротивления, %, определяли по формулам:

$$\delta = \frac{\alpha_{\rm p} - \alpha_{\rm o}}{\alpha_{\rm p}} 100; \qquad \delta_1 = \frac{\Delta p_{\rm p} - \Delta p_{\rm o}}{\Delta p_{\rm p}} 100. \tag{11}$$

Сравнение опытных и расчетных значений тепло- и аэродинамических характеристик пучков I...III приведено в табл. 2. Числовые опытные значения  $\alpha_{oc}$  соответствуют теплоотдаче стабилизированных рядов пучков I...III. В методике [4] обобщенные уравнения даются для теплоотдачи стабилизированных рядов, измеренной локальным моделированием.

Поэтому при расчетах по (11) значений  $\delta$  для этой методики вместо  $\alpha_{p}$  и  $\alpha_{o}$  соответственно подставляли  $\alpha_{pc}$  и  $\alpha_{oc}$ .

Анализ табл. 2 показывает, что наилучшее совпадение по теплоотдаче расчетных и опытных величин обеспечивает методика КПИ-ЦКТИ, а методика АЛТИ — лишь в области Re  $\geq$  8000 ( $w \geq$  5,2 м/с). При Re < 8000

Таблица 2

| - <u></u>                                  | T      | Значения параметров         |       |       |       |        |        |  |
|--------------------------------------------|--------|-----------------------------|-------|-------|-------|--------|--------|--|
| Параметры                                  | Источ- | для номера пучка при w, м/с |       |       |       |        |        |  |
|                                            | ник    | 1,736                       |       |       | 17,36 |        |        |  |
|                                            |        | 1                           | 11    | III   | I     | II     | Ш      |  |
| $\alpha_0$ , BT/(M <sup>2</sup> ·K)        |        | 16,67                       | 18,72 | 18,41 | 83,58 | 85,57  | 84,16  |  |
| $\Delta p_{0}$ , $\Pi a$                   |        | 8,64                        | 9,51  | 10,38 | 474,4 | 455,4  | 453,2  |  |
| $\alpha_{oc}$ , Bt/(m <sup>2</sup> ·K)     |        | 17,60                       | 18,97 | 18,4  | 92,39 | 88,72  | 86,06  |  |
| $\Delta p_{\rm p}$ , $\Pi a$               |        | 9,53                        | 16,3  | 20,8  | 537,5 | 915,3  | 1169,0 |  |
| $d_{\mathfrak{I}}$ , мм                    | [1]    | 12,95                       | 5,48  | 4,85  | 12,95 | 5,48   | 4,85   |  |
| $\delta_1, \%$                             |        | 9,3                         | 41,7  | 50,0  | 11,3  | 59,2   | 61,2   |  |
| $\alpha_{\rm p}$ , Bt/(M <sup>2</sup> ·K)  | [4]    | 18,93                       | 21,72 | 23,80 | 90,50 | 104,10 | 112,50 |  |
| δ, %                                       |        | 35,8                        | 41,3  | 49,3  | 1,37  | -4,3   | -13,0  |  |
| $\alpha_{\rm pc}$ , Bt/(m <sup>2</sup> ·K) | [5]    | 22,4                        | 28,1  | 24,4  | 109,7 | 135,7  | 153,2  |  |
| δ, %                                       |        | 21,2                        | 32,4  | 24,6  | 15,8  | 33,2   | 43,8   |  |
| $\alpha_{\rm p}$ , Bt/(m <sup>2</sup> ·K)  |        | 14,8                        | 12,5  | 14,8  | 85,1  | 80,7   | 98,4   |  |
| δ, %                                       | [6]    | 18,2                        | -2,7  | 18,6  | -4,9  | -34,6  | -29,9  |  |
| $\Delta p_{\rm p}$ , $\Pi a$               |        | 8,64                        | 10,47 | 10,80 | 485,7 | 631,0  | 710,6  |  |
| $\delta_1, \%$                             |        | 0,0                         | 9,6   | 3,9   | 2,2   | 27,9   | 36,0   |  |

Результаты сравнения теплоаэродинамических характеристик пучков

расчетные значения теплоотдачи на 35...50 % превышают опытные. Приемлемое согласование по сопротивлению расчетных с опытными значениями обеспечивает методика КПИ-ЦКТИ, однако в области Re > 15000 расчетные значения сопротивления стесненных пучков II, III оказываются завышенными в среднем на 30 %.

Таким образом, выполненная работа показала необходимость дальнейшего накопления банка экспериментальных данных теплоаэродинамических характеристик стесненных пучков для корректировки существующих методик расчета теплоотдачи и потери давления воздуха в таких пучках из труб со спиральными поперечными ребрами.

## ЛИТЕРАТУРА

1. Ю дин В. Ф. Теплообмен поперечно оребренных труб. – Л.: Машиностроение, 1982. – 189 с.

2. Письменный Е. Н., Легкий В. М. Красчету теплообмена многорядных шахматных пучков с кольцевым поперечным оребрением // Теплоэнергетика. – 1984. – № 6. – С. 62–65.

3. Кунтыш В.Б. Теплообмен и аэродинамическое сопротивление шахматных стесненных пучков из труб с накатными ребрами // Известия вузов. Лесной журнал. – 1991. – № 2. – С. 74–80.

4. Кунтыш В.Б., Кузнецов Н.М. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения. – СПб.: Энергоатомиздат, 1992. – 280 с.

5. Жукаускас А., Улинскас Р. Теплоотдача поперечно обтекаемых пучков труб. – Вильнюс: Мокслас, 1986. – 204 с.

6. Руководящий технический материал РТМ 108.030.140-87. Расчет и рекомендации по проектированию поперечно-оребренных конвективных поверхностей нагрева стационарных котлов /НПО ЦКТИ. – СПб., 1988. – 31 с.

Представлена кафедрой промышленной теплоэнергетики

Поступила 7.09.2000

УДК 635.9:631.563

## ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ НАСЫЩЕННОЙ ВОЗДУШНОЙ СРЕДЫ В ГИПОБАРИЧЕСКОМ ХРАНИЛИЩЕ ПРИ ИЗМЕНЕНИИ В НЕМ ДАВЛЕНИЯ

## Докт. техн. наук ПИСАРЕВ В. Е., канд. техн. наук ДАВЫДЕНКО Б. В.

Киевский национальный университет строительства и архитектуры

Из принятой ранее в [1] физической модели процесса вентилирования гипобарического хранилища сельскохозяйственной продукции следует, что при изменении в нем абсолютного давления могут периодически совершаться два политропных процесса: сжатие воздуха с его нагревом и увлажнением и расширение воздуха с понижением его температуры и выделением влаги. В [1] рассмотрена задача определения температуры воздушной среды в гипобарическом хранилище при изменении в нем давления с учетом линейной зависимости влагосодержания