ИССЛЕДОВАНИЕ СВОБОДНО-КОНВЕКТИВНОГО ТЕПЛООБМЕНА РАЗЛИЧНО ОРИЕНТИРОВАННЫХ В ПРОСТРАНСТВЕ МАЛОРЯДНЫХ КОРИДОРНЫХ ПУЧКОВ ИЗ ТРУБ СО СПИРАЛЬНЫМИ РЕБРАМИ

Докт. техн. наук, проф. КУНТЫШ В. Б., асп. ПОЗДНЯКОВА А. В., канд. техн. наук САМОРОДОВ А. В.

Архангельский государственный технический университет

Коридорные пучки и отдельные одиночные ряды из труб со спиральными накатными и круглыми шайбовыми ребрами с протеканием теплообмена при естественной конвекции воздуха широко применяются в качестве теплопередающей поверхности преимущественно на базе тепловых труб в теплоутилизаторах паровоздушной смеси сушильной части бумаго- и картоноделательных машин, лесосушильных камер, систем вентиляции промышленных цехов и общественных зданий, систем воздушного отопления индивидуальных домов, в охлаждающих устройствах для искусственного замораживания и нагрева грунта, в калориферах для нагрева воздуха сушильных установок, в охлаждающих батареях холодильных камер, воздухоохлаждаемых конденсаторах пара вапотронов [1], а также при охлаждении различного электронного оборудования. Обшим конструктивным свойством этих теплообменных устройств является небольшое число поперечных рядов труб, обычно не превышающее z = 4, 5. Расширение применения в аппаратах и установках промышленной энергетики тепловых процессов с естественной конвекцией теплоносителя является эффективным направление энергосбережения. Однако это направление при практической реализации сдерживается и в некоторой мере даже тормозится недостаточной изученностью [2-4] свободно-конвективного теплообмена в пучках ребристых труб при изменении компоновочных и геометрических параметров в широком интервале. На протяжении целых десятилетий исследования теплообмена пучков из круглоребристых труб при естественной конвекции воздуха активно не проводились, считались не актуальными.

Цель работы — экспериментальное исследование влияния изменения в значительном интервале компоновочных параметров труб в коридорном пучке на интенсивность свободно-конвективной теплоотдачи и получение расчетных критериальных зависимостей.

Пучки собирались из биметаллических оребренных труб следующих геометрических параметров: наружный диаметр ребра d = 55,65 мм; диаметр трубы у основания ребра $d_0 = d - 2h = 26,63$ мм; высота ребра h = 14,51 мм; шаг ребра s = 2,91 мм; средняя толщина ребра $\Delta = 0,75$ мм; теплоотдающая длина оребренной части l = 300 мм; коэффициент оребрения $\varphi = 16,8$. Алюминиевые спиральные трехзаходные ребра, изготовленные по технологии ВНИИМЕТМАШа, накатаны на латунной трубе наружного диаметра $d_{\rm H} = 25$ мм с толщиной стенки $\delta = 2$ мм.

Коридорный пучок характеризуется числом поперечных рядов труб z, абсолютными поперечным S_1 и продольным S_2 шагами разбивки труб, а также относительными шагами $\sigma_1 = S_1/d$ и $\sigma_2 = S_2/d$ (рис. 1a). В этой работе представлены результаты по двухрядным (z = 2) коридорным

пучкам. Поперечный шаг составлял $S_1 = 58$; 61; 64; 70; 76 мм ($\sigma_1 = S_1/d = 1,043$; 1,097; 1,151; 1,259; 1,367). Каждому значению S_1 соответствовало семь значений продольного шага $S_2 = 58$; 61; 64; 70; 76; 86; 100 мм ($\sigma_2 = S_2/d = 1,043$; 1,097; 1,151; 1,259; 1,367; 1,547; 1,799). Таким образом, было испытано тридцать пять моделей двухрядных пучков с горизонтальным расположением труб. Дополнительно на двух пучках с шагами $S_1 = 70$; $S_2 = 61$ и $S_1 = 76$; $S_2 = 64$ мм проведены опыты при расположении осей труб под углом наклона к горизонтальной плоскости $\gamma = 15^\circ$; 30°; 45°; 60°; 90°, а также при наклоне продольной оси пучка $\omega = 15^\circ$; 30°; 45°; 60° (рис.16, в).

Рис. 1. Двухрядные коридорные пучки: а – горизонтальный; б – при угле наклона осей труб γ; в – при угле наклона продольной оси пучка ω; 1 – трубы-калориметры

Эксперименты выполнены в условиях полного теплового моделирования. Каждый ряд состоял из пяти труб [5], обогреваемых переменным электрическим током. Центральная труба в каждом ряду являлась калориметром, у основания ребер которого по винтовой линии на половине окружности трубы заложено семь хромель-алюмелевых термопар. Расположение калориметров в каждом ряду позволило для заданного теплового режима одновременно получать первичные данные для определения средней теплоотдачи как каждого отдельного ряда, так и пучка в целом. Подробное описание экспериментальной установки, конструкции трубы-калориметра, методики исследования и порядка проведения опытов изложены в [6].

В ходе экспериментов средняя температура поверхности труб-калориметров у основания ребер изменялась в интервале $t_{ct} = 30...215$ °C, температура окружающего воздуха $t_0 = 10...25$ °C, подводимая к калориметрам электрическая мощность W = 10...200 Вт.

Коэффициент теплоотдачи свободной конвекцией отдельного ряда вычисляли по формуле, Вт/(м²·К):

$$\alpha_{\kappa} = \frac{W - Q_{\Pi O T} - Q_{\pi}}{F(t_{cT} - t_0)} = \frac{Q_{\kappa}}{F(t_{cT} - t_0)},$$
(1)

где $Q_{\text{пот}}$ — тепловые потери через торцы трубы-калориметра, принимаемые по результатам тарировочных опытов [6], Вт; Q_{π} — тепловой поток, отданный излучением, Вт; $F = \pi d_0 l \phi$ — полная наружная теплоотдающая площадь поверхности калориметра, м².

Среднее значение α всего пучка для заданного теплового режима вычисляли также по (1), но *t*_{ст} определяли как среднеарифметическую по показаниям термопар обоих калориметров; значения Q_{κ} и F равны соответственно суммарным значениям этих величин обоих калориметров.

Теплоотдача излучением составляла 15...25 % от суммарного теплового потока. Эффективная степень черноты одиночной оребренной трубы была определена опытно-расчетным способом [7]; тепловой поток излучением от пучка в окружающее пространство вычисляли аналитически зональным методом по рекомендациям [4, 8]. В пучке выделяли две зоны: зона 1 — наружные половины труб поперечных рядов, зона 2 внутренние половины труб поперечных рядов. Зоной 3 считается окружающая среда, состоящая из двух плоскостей, ограничивающих пучок. Установлено, что если для пучков с числом поперечных рядов два и более пользоваться обычным методом расчета, т. е. без разбиения пучка на зоны, то результат для Q_{π} получается завышенным на 20...50 %. Далее анализируется только теплоотдача конвекцией.

Опытные данные обрабатывались в числах подобия Нуссельта Nu = $\alpha_{\rm K} d_0 / \lambda$ и Релея Ra = $g\beta d_0^3 (t_{\rm CT} - t_0) / (\nu a)$. Физические свойства воздуха λ , ν , β , *a* принимались по температуре окружающего воздуха t_0 . Относительная среднеквадратичная погрешность опытных значений Nu и Ra не превышала соответственно 5,7 и 3 %.

Результаты опытов в критериальной обработке по средней теплоотдаче свободной конвекцией горизонтальных двухрядных коридорных пучков представлены на рис. 2. Опытные значения теплоотдачи каждой серии, изображенные точками, с отклонением до ±5 % аппроксимированы формулами вида

$$Nu = ARa^{n} [1 - exp(-B/Ra)].$$
⁽²⁾

Рис. 2. Средняя теплоотдача пучков: I-V – номера пучков по табл. 1, для которых соответственно $S_1 = 58$; 61; 64; 70; 76 мм; $1-7 - S_2 = 58$; 61; 64; 70; 76; 86; 100 мм; 8 – расчет по (2)

Численные значения постоянных *A*, *B*, *n* в (2) для средней теплоотдачи горизонтальных двухрядных пучков даны в табл. 1.

-							Таблица І
<i>S</i> ₂ , мм	58	61	64	70	76	86	100
		_	1. $S_1 =$	58 мм			
A-10 ³	0,23	1,27	1,30	1,34	1,70	1,90	2,73
n	0,76	0,60	0,60	0,60	0,58	0,58	0,55
B-10 ⁻⁵	2,2	3,5	3,7	4,2	4,5	4,1	4,5
_			II. $S_1 =$	= 61 мм			
A-10 ³	4,30	7,50	5,45	6,50	8,30	4,80	9,00
n	0,50	0,45	0,48	0,47	0,45	0,50	0,45
B-10 ^{−5}	5,0	6,6	6,0	5,5	6,9	6,0	6,2
			111. S ₁ =	= 64 мм			
A-10 ³	7,80	8,00	8,10	10,80	8,90	9,30	9,40
n	0,45	0,45	0,45	0,43	0,45	0,45	0,45
B-10 ⁻⁵	6,7	6,0	6,2	6,5	5,5	5,8	7,8
			IV. S ₁ =	= 70 мм			
A-10 ³	8,0	11,3	8,3	11,0	10,0	16,0	7,6
п	0,45	0,43	0,45	0,43	0,44	0,40	0,47
B-10 ⁻⁵	5,9	6,8	6,5	7,5	7,5	10,0	7,0
			$V_{.} S_{1} =$	• 76 мм			
A-10 ³	9,7	9,8	10,0	15,3	12,5	16,0	11,5
n	0,43	0,43	0,43	0,40	0,42	0,40	0,43
<i>B</i> ·10 ⁻⁵	5,9	6,5	7,0	8,0	8,0	8,0	7,5

Как следует из рис. 2, средняя теплоотдача пучка для каждого поперечного шага $S_1 = \text{сопst}$ возрастает с увеличением продольного шага S_2 , вследствие приращения высоты столба нагретого воздуха, а следовательно, и подъемной силы. Увеличение числа Nu при изменении продольного шага S_2 от 58 до 100 мм составляет для $S_1 = 58$; 61; 64; 70; 76 мм соответственно 20; 17; 18; 19; 17 %.

На рис. 3 приведены графики, дающие представление об изменении числа Nu порядной и средней теплоотдачи исследованных горизонтальных пучков от относительных шагов σ_1 и σ_2 для постоянного значения числа Ra = 150000. Теплоотдача первого ряда имеет очевидный минимум в области шага $\sigma_2 \approx 1,043...1,259$ (рис. 3а), причем он более выражен для значений $\sigma_1 = 1,043$; 1,097 и 1,151. Это можно объяснить следующим образом. Каждый из рядов образует свою область теплового следа [9]. В коридорном пучке, особенно в первом ряду, создаются условия гидродинамического следа, неблагоприятные для интенсивного теплообмена. При шагах σ₂ ≈ 1,043...1,259 взаимодействие следов первого и второго рядов приводит к противотоку (встречному движению), что вызывает уменьшение теплоотдачи первого ряда. С увеличением продольного шага оз данный показатель интенсифицируется. Для более разреженных пучков с $\sigma_1 = 1,259$ и 1,367 теплоотдача первого ряда практически одинакова. Теплоотдача пучка IV для всего диапазона изменения σ2 на 2...8 % выше теплоотдачи других пучков.

Теплоотдача второго ряда пучков (рис. 36) плавно возрастает с увеличением σ₂.

В области $\sigma_2 = 1,043...1,151$ средняя теплоотдача пучков (рис. 3в) практически одна и та же в пределах погрешности эксперимента. В области изменения шага $\sigma_1 = 1,547...1,799$ темпа ее прироста практически

не наблюдается, расхождение в значениях числа Nu не превышает погрешности эксперимента.

В целом теплоотдача пучков с поперечным шагом $S_1 = 61$; 64; 70; 76 мм выше теплоотдачи пучков с шагом $S_1 = 58$ мм соответственно на 2...8, 7...13, 5...14, 4...13 %, что, возможно, объясняется более высоким аэродинамическим сопротивлением движению потока воздуха в пучке с более тесной компоновкой труб. Теплоотдача пучков с поперечным шагом $S_1 = 76$ мм ниже теплоотдачи пучков с $S_1 = 70$ мм и $S_1 = 64$ мм. Поэтому более свободные пучки с поперечным шагом $S_1 \ge 86$ мм в тепловом отношении применять на практике нецелесообразно, а их исследования представляют в большей мере теоретический интерес. Линии графиков теплоотдачи второго ряда и средней теплоотдачи пучка располагаются эквидистантно.

На двух моделях пучков $S_1 = 70$; $S_2 = 61$ и $S_1 = 76$; $S_2 = 64$ мм были проведены опыты с расположением осей труб под углом γ к горизонтальной плоскости (рис. 16). Геометрические параметры, а также численные значения постоянных A, n и B при различных углах наклона γ в (2) по средней теплоотдаче этих пучков приведены в табл. 2.

γ	0°	15°	30°	45°	60°	90°
		$S_1 = 70$); $S_2 = 61 \text{ mm}$	4		
A-10 ³	11,3	8,0	7,7	8,9	7,4	13,2
n	0,42	0,45	0,45	0,43	0,43	0,36
B-10 ⁻⁵	6,8	7,5	6,3	6,0	7,5	10,5
		$S_1 = 76$	5; $S_2 = 64 \text{ mm}$	4		
A-10 ³	10,0	10,3	14,3	13,0	13,0	-
n	0,43	0,43	0,40	0,40	0,39	İ
B-10 ⁻⁵	7,0	6,0	8,0	8,5	10,0	-

Таблица 2

При увеличении угла наклона γ от 0 до 90° средняя теплоотдача пучка с $S_1 = 70$ мм; $S_2 = 61$ мм уменьшается на 42 %. Для вертикального пучка теплоотдача первого и второго рядов идентична, что объясняется теплогидродинамической симметрией рядов труб. С увеличением угла наклона γ от 0 до 60° средняя теплоотдача пучка при $S_1 = 76$ мм; $S_2 = 64$ мм понижается на 21 %. На рис. 4 изображена зависимость поправочного коэффициента $C_{\gamma} = \text{Nu}_{\gamma}/\text{Nu}_{\gamma=0^{\circ}}$ от угла γ . На величину C_{γ} очень слабо влияет значение числа Ra. Теплоотдача наклонных пучков с $S_1 = 76$; $S_2 = 64$ мм выше по всему диапазону угла γ теплоотдачи пучка с $S_1 = 70$; $S_2 = 61$ мм, расхождение составляет 9 %. Для обеих этих компоновок при угле наклона $\gamma = 15^{\circ}$ теплоотдача одинакова и выше теплоотдачи соответствующих горизонтальных пучков примерно на 3 %.

Рис. 4. Зависимость поправочного коэффициента C_{γ} от угла наклона труб γ : 1, 2 – расчет по (2) соответственно для пучка с $S_1 = 70$; $S_2 = 61$ и пучка с $S_1 = 76$; $S_2 = 64$ мм

На двухрядном пучке с $S_1 = 70$; $S_2 = 61$ мм выполнены опыты при различных углах наклона продольной оси пучка $\omega = 15^{\circ}$; 30° ; 45° ; 60° (рис. 1в). Численные значения постоянных *A*, *n*, *B* в (2) для средней теплоотдачи пучка при различных углах наклона ω приведены в табл. 3.

Таблица З

ω	0°	15°	30°	45°	60°		
$S_1 = 70; S_2 = 61 \text{ mm}$							
$A \cdot 10^3$	11,3	12,5	11	10,2	11,5		
n	0,42	0,42	0,44	0,44	0,42		
B · 10 ⁵	6,8	9,0	7,0	7,0	7,0		

На рис. 5 представлена зависимость $C_{\omega} = \mathrm{Nu}_{\omega}/\mathrm{Nu}_{\omega=0^{\circ}}$ от угла наклона ω . С увеличением угла в интервале $\omega = 0...30^{\circ}$ средняя теплоотдача пучка возрастает, расхождение с горизонтальным пучком достигает 19 %. Это объясняется тем, что при $\omega = 30^{\circ}$ трубы второго ряда оказываются расположены в свободном пространстве между трубами первого ряда и омываются набегающим воздухом без предварительного подогрева первым рядом. С последующим увеличением $\omega = 45...60^{\circ}$ средняя теплоотдача пучка снижается, различие с горизонтальным пучком составляет 2 % при $\omega = 60^{\circ}$.

Рис. 5. Зависимость поправочного коэффициента C_{ω} от угла наклона ω для пучка с $S_1 = 70$; $S_2 = 61$ мм; 1 — расчет по (2)

Таким образом, получены уравнения для расчетов свободноконвективного теплообмена двухрядных коридорных пучков из ребринеограниченном объеме воздуха стых труб в для лиапазона $Ra = (0, 3...3, 5) \cdot 10^5$, широком интервале изменения шагов труб $S_1 = (1,043...1,367)d; S_2 = (1,043...1,799)d$ и различном их пространственном расположении.

обозначения

 λ — коэффициент теплопроводности воздуха, Вт/(м·К); ν — то же, кинематической вязкости воздуха, м²/с; *a* — то же, температуропроводности воздуха, м²/с; $\beta = 1/(273 + t_0)$ — то же, объемного расширения воздуха, K⁻¹; $\alpha_{\rm K}$ — приведенный коэффициент теплоотдачи свободной конвекцией, Вт/(м²·К); $Q_{\rm K}$ — тепловой поток, переданный свободной конвекцией, Вт; $Q_{\rm I}$ — тепловой поток, переданный излучением, Вт; $Q_{\rm not}$ — торцевые тепловые потери калориметра, Вт.

ЛИТЕРАТУРА

1. Тиктин С.А. Вапотронная техника. – Киев: Техніка, 1975. – 152 с.

2. Позднякова А. В., Самородов А. В., Кунтыш В. Б. Исследование теплообмена при естественной конвекции воздуха в горизонтальных малорядных коридорных пучках из оребренных труб // Ресурсосберегающие технологии в лесной и деревообрабатывающей промышленности: Тез. докл. междунар. науч.-техн. конф. 24–25 ноября 1999 г. – Мн.: БГТУ, 1999. – С. 283–285.

3. Позднякова А. В., Самородов А. В. Влияние угла наклона на свободно-конвективный теплообмен двухрядных коридорных пучков из оребренных труб // Повышение эффективности теплообменных процессов и систем: Материалы II междунар. науч.-техн. конф. 19-22 апреля 2000 г. – Вологда: ВоГТУ, 2000. – С. 58–61.

4. Самородов А. В. Исследование свободно-конвективного теплообмена шахматных оребренных пучков аппаратов воздушного охлаждения // Автореф. дис. ... канд. техн. наук. – СПб, 1999. – 23 с.

5. Кунтыш В.Б., Позднякова А.В. Исследование влияния числа оребренных труб в поперечном ряду пучка на теплоотдачу при свободной конвекции воздуха // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. – Архангельск: АГТУ, 1999. – Вып. 5. – С. 59–63.

6. Самородов А.В., Кунтыш В.Б. Влияние наклона однорядного пучка труб со спиральными ребрами на свободно-конвективный теплообмен // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. – Архангельск: АГТУ, 1996. – Вып. 1. – С. 63–69. 7. Самородов А.В., Рошин С.П., Кунтыш В.Б. Лучистый теплооб-

7. Самородов А. В., Рошин С. П., Кунтыш В. Б. Лучистый теплообмен одиночной ребристой трубы с окружающей средой // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр. – Архангельск: АГТУ, 1997. – Вып. 2. – С. 102–113.

8. Блох А. Г., Журавлев Ю. А., Рыжков Л. Н. Теплообмен излучением. - М.: Энергоатомиздат, 1991. - 432 с.

9. Джалурия Й. Естественная конвекция: Тепло-и массообмен / Пер. с англ. – М.: Мир, 1983. – 400 с.

Представлена кафедрой промышленной теплоэнергетики

Поступила 7.09.2000