ключается соответствующее тепловое оборудование, собственно, вся линия подготовки битума в традиционном ее понимании. Это оправдывает необходимость ожидаемого увеличения времени перемешивания компонентов АБС в смесителе. Сохранение производительности АБЗ может быть обеспечено, например, за счет применения двух смесителей вместо одного в составе технологической линии. Энергозатраты на производство 1 т капсулированного битума, требуемые непосредственно для работы капсулятора, оцениваются в 0,1 кг условного топлива на 1 т битума, или $\approx 0,006$ кг на 1 т АБС. Очевидно, что они несоизмеримы с потерями энергии в существующей теплотехнологической цепи подготовки битума. Это и определяет энергоэффективность предлагаемой технологии.

Представлена кафедрой ПТЭ и ТТ

Поступила 28.03.2003

УДК 697.921.45

АНАЛИЗ АЭРОДИНАМИЧЕСКИХ РЕЖИМОВ ПОМЕЩЕНИЙ ЖИЛЫХ ЗДАНИЙ

Канд. техн. наук СИЗОВ В. Д., кандидаты техн. наук, доценты АКЕЛЬЕВ В. Д., АРЕСТОВИЧ А. И., БЫКОВСКИЙ С. Г.

Белорусский национальный технический университет

Рассматривается воздушная среда многоэтажного жилого (гражданского) здания с наружными ограждениями из капиллярно-пористых материалов (рис. 1, 2). Оконные и дверные проемы проницаемы для наружного воздуха. В результате естественного тепло- и массопереноса происходит движение газов, водяных паров, пыли и теплоты, поля скоростей и концентраций которых взаимозависимы и представляют комплекс разнородных, но взаимосвязанных процессов. Движение воздуха и газов, распространение теплоты подчиняются общим законам сохранения и превращения материи и энергии.

Тепломассопотоки здания могут быть описаны дифференциальными уравнениями сплошности движения (Навье-Стокса, Бернулли), теплопроводности (Фурье – Кирхгофа), уравнениями переноса вещества и теплообмена на границе твердого тела и жидкости.

Диапазоны реальных температур, градиентов давлений и скоростей дают основание считать, что исследуемая система может рассматриваться как несжимаемая, так как ее скорости значительно меньше скорости распространения звука. В этом случае воздушная среда оказывает сопротивление всестороннему сжатию и обладает легкой подвижностью.

Рис. 1. Вертикальная схема тепло- и массопотоков в помещениях жилого здания

В основную систему уравнений входят тепловые и материальные балансы для всех характерных объемов и поверхностей, выделенных в расчетной схеме жилого помещения (рис. 2). В общем виде состав системы уравнений следующий.

• Уравнения баланса массы и теплоты нижней зоны (I):

$$\sum_{i=1}^{n} j_{i}^{1} A_{i}^{1} = 0 ; \quad \sum_{i=1}^{n} q_{i}^{1} A_{i}^{1} = 0 ,$$

где j_i^{I} , q_i^{I} – потоки массы и теплоты через единицу поверхности площадью A_i^{I} в зоне, расположенной на расстоянии 1/3 высоты помещения от уровня пола в единицу времени, кг/(м² · ч), Вт/м².

• Уравнения баланса массы и теплоты средней зоны (II):

$$\sum_{i=1}^{n} j_{i}^{II} A_{i}^{II} = 0; \quad \sum_{i=1}^{n} q_{i}^{II} A_{i}^{II} = 0,$$

где j_i^{II} , q_i^{II} – потоки массы и теплоты через единицу поверхности площадью A_i^{II} в зоне, расположенной на расстоянии 2/3 высоты помещения от уровня пола в единицу времени, кг/(м² · ч), Вт/м².

Рис. 2. Горизонтальная схема тепло- и массопотоков в квартире

• Уравнения баланса массы и теплоты верхней зоны (III):

$$\sum_{i=1}^{n} j_{i}^{\text{III}} A_{i}^{\text{III}} = 0 ; \quad \sum_{i=1}^{n} q_{i}^{\text{III}} A_{i}^{\text{III}} = 0 ,$$

где j_i^{III} , q_i^{III} – потоки массы и теплоты через единицу поверхности площадью A_i^{III} в зоне, расположенной на расстоянии 2/3 высоты помещения от уровня пола в единицу времени, кг/(м² · ч), Вт/м². • Уравнения баланса массы и теплоты трех зон (0):

$$\sum_{i=1}^{n} j_{i}^{0} A_{i}^{0} = 0 ; \qquad \sum_{i=1}^{n} q_{i}^{0} A_{i}^{0} = 0 ,$$

где j_i^0 , q_i^0 – суммарная плотность потока массы и теплоты через единицу поверхности площадью A_i^0 в единицу времени, кг/(м² · ч), Вт/м².

Гидравлические потери давления на трение $\Delta p_{\rm rp}$ и местные сопротивления $\Delta p_{\rm u}$ определяются выражением

$$\Delta p_0 = \Delta p_{\rm TD} + \Delta p_{\rm M} \,. \tag{1}$$

Их значения вычисляются по формулам

$$\Delta p_{\rm rp} = \xi_{\rm rp} \frac{L}{d} \frac{w^2}{2} \rho; \qquad (2)$$

$$\Delta p_{\rm M} = \xi_{\rm M} \frac{w^2}{2} \rho , \qquad (3)$$

где $\xi_{\rm тр}$ – коэффициент гидродинамического сопротивления на трение; $\xi_{\rm m}$ – то же местных сопротивлений; *L*, *w*, ρ – соответственно длина, м, скорость, м/с и плотность, кг/м³, потока; *d* – эквивалентный диаметр, м, определяемый выражением $d = 4A/\Pi$, в котором *A*, Π – соответственно площадь, м², и «смоченный» периметр, м, «живого» поперечного сечения потока.

Коэффициент гидродинамического сопротивления для ламинарного потока по Хагену–Пуазейлю вычисляется по формуле

$$\xi_{\rm TD} = 64/{\rm Re}\,,\tag{4}$$

где Re = wd/v – число Рейнольдса; v – коэффициент кинематической вязкости воздуха, M^2/c .

Для турбулентного режима коэффициент гидродинамического сопротивления вычисляется по формуле

$$\xi_{\rm m} = 0.3164 / {\rm Re}^{0.25}$$
 (5)

Закон сохранения массы для потока воздуха можно представить уравнением

$$\frac{\partial p}{\partial \rho} + \operatorname{div}(\rho w) = 0, \qquad (6)$$

которое при ρ = const принимает вид

$$\operatorname{div}(w) = \frac{\partial w_x}{\partial x} + \frac{\partial w_y}{\partial y} + \frac{\partial w_z}{\partial z} = 0.$$
(7)

64

Из (7) следует, что при движении несжимаемой жидкости скорость ее объемной деформации равна нулю. При установившемся режиме течения жидкости в потоке ее расход в каждом сечении остается постоянным, т. е.

$$\int_{i} \rho_{i} w_{m} dA = \text{const}, \qquad (8)$$

где w_m – скорость движения жидкости в точке *m*, нормальная к элементу поверхности *dA*. Если скорости совпадают с направлением нормали к поверхности интегрирования, а в поперечном сечении значения плотности и скорости не изменяются, то

$$\rho_i w_i A_i = \text{const} \,. \tag{9}$$

Для влажного воздуха плотность потока может быть вычислена по формуле

$$\rho = \frac{\rho(28,95 - 10,93\varphi)}{8314,41(t + 273)} = \frac{0,00131\rho(2,649 - \varphi)}{(t + 273)}.$$
 (10)

Используя (2), (4), (10), получим формулу для расчета потерь давления на трение при ламинарном режиме движения воздушного потока

$$\Delta p_{\rm Tp}^{\rm nam} = \frac{64}{\rm Re} \frac{L\Pi w^2}{4A2} \frac{0.00131p(2.649 - \varphi)}{(t + 273)} = \frac{0.00262wL\Pi^2 vp(2.649 - \varphi)}{A^2(t + 273)} \,. \tag{11}$$

Из выражений (1)...(4), (10), (11) получим уравнения для расчета общих потерь давления при ламинарном режиме движения воздушного потока

$$\Delta p_{o}^{\pi_{\text{AM}}} = \frac{0.00262 w L v \Pi^{2} p(2.649 - \varphi)}{A^{2} (t + 273)} + \xi_{\text{M}} \frac{w^{2}}{2} \frac{0.00131 p(2.649 - \varphi)}{(t + 273)} = \frac{0.00065 w p(2.649 - \varphi)}{(t + 273)} \left(\frac{0.00197 L \Pi^{2} v}{A^{2}} + \xi_{\text{M}} w\right).$$
(12)

Из выражений (1)...(3), (5), (10) получим формулу для расчета потерь давления на трение при турбулентном режиме движения воздушного потока

$$\Delta p_{\tau p}^{\tau y p} = \frac{0,3164 \cdot 0,00131p(2,649 - \varphi)\Pi^{1,25}Lw^{1,75}v^{0,25}}{A^{1,25} \cdot 11,3(t + 273)} =$$
$$= \frac{0,000036p(2,649 - \varphi)\Pi^{1,25}Lw^{1,75}v^{0,25}}{A^{1,25}(t + 273)}.$$
(13)

Общие потери давления для турбулентного режима можно рассчитать по формуле

$$\Delta p_{o}^{\text{Typ}} = \frac{0,000036p(2,649 - \varphi)w^{1.75}}{(t + 273)} \left(\frac{\Pi^{1.25}Lw^{0.25}v^{0.25}}{A^{1.25}}\right) + 0,00062\xi_{\text{M}}.$$
 (14)

В качестве примера вычислим потери давления для ламинарного и турбулентного режимов по формулам (12) и (14) при следующих исходных данных:

$$p = 101325 \text{ Ta}; t = 10 \text{ °C}; v = 14,16 \cdot 10^{-6} \text{ m}^2/\text{c}; \varphi = 0,5; w = 0,6 \text{ m/c};$$

$$L = 7 \text{ m}; A = 0,000071 \text{ m}^2; \Pi = 0,0094 \text{ m}; \xi_{\text{m}} = 0.$$

$$\Delta p_o^{\pi \text{am}} = \frac{0,00065 \cdot 0,6 \cdot 101325 \cdot (2,649 - 0,5)}{10 + 273} \times \left(\frac{0,00197 \cdot 7 \cdot 14,16 \cdot 0,0094^2}{10^6 \cdot 0,000071^2} + 0\right) = 0,102 \text{ Ta};$$

$$\Delta p_o^{\text{Typ}} = \frac{0,00036 \cdot 101325 \cdot (2,649 - 0,5) \cdot 0,6^{1.75}}{10 + 273} \times \frac{0,0094^{1.25} \cdot 7 \cdot 0,6^{0.25} \cdot 14,16^{0.25}}{1000007^{1.25}} = 33,6 \text{ Ta}.$$

Оценим влияние относительной влажности воздуха на потери давления при ламинарном и турбулентном режимах, принимая: $\varphi_1 = 0,3$; $\varphi_2 = 0,7$; p = 101325 Па; t = 10 °C; $\nu = 14,16 \cdot 10^{-6}$ м²/c; w = 0,6 м/c; L = 7 м; A = 0,0000071 м².

При ламинарном режиме результаты следующие:

$$\Delta p_{o1}^{\pi_{AM}} = \frac{0,00065 \cdot 0,6 \cdot 101325 \cdot (2,649 - 0,3)}{283} \times \left(\frac{0,00197 \cdot 7 \cdot 14,16 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,111 \,\Pi a;$$
$$\Delta p_{o2}^{\pi_{AM}} = \frac{0,00065 \cdot 0,6 \cdot 101325 \cdot (2,649 - 0,7)}{283} \times \left(\frac{0,00197 \cdot 7 \cdot 14,16 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,092 \,\Pi a;$$

$$\Delta p_{0.cp}^{\pi am} = 0,1016 \ \Pi a.$$

•

При турбулентном режиме результаты следующие:

$$\Delta p_{o1}^{\text{Typ}} = \frac{0,000036 \cdot 101325 \cdot (2,649 - 0,3) \cdot 0,6^{1,75}}{10 + 273} \times \frac{0,0094^{1,25} \cdot 7 \cdot 0,6^{0,25} \cdot 14,16^{0,25}}{1000000^{0,25} \cdot 0,0000071^{1,25}} = 36,8 \text{ Ta};$$

$$\Delta p_{o2}^{\text{Typ}} = \frac{0,000036 \cdot 101325 \cdot (2,649 - 0,7) \cdot 0,6^{1,75}}{10 + 273} \times \frac{0,0094^{1,25} \cdot 7 \cdot 0,6^{0,25} \cdot 14,16^{0,25}}{1000000^{0,25} \cdot 0,0000071^{1,25}} = 30,56 \text{ Ta};$$

$$\Delta p_{o,cp}^{\text{Typ}} = 33,63 \text{ Ta}.$$

Результаты расчетов для ламинарного и турбулентного режимов показывают, что относительная влажность воздуха φ оказывает влияние на потери давления. Поэтому для точных расчетов следует использовать формулы (12) и (14). При относительной влажности воздуха $\varphi = 0,5$ эти формулы для ламинарного и турбулентного режимов имеют вид:

$$\Delta p_{o}^{\pi_{\text{AM}}} = \frac{0,00139wp}{t+273} \left(\frac{0,00197L\Pi^{2}v}{A^{2}} + \xi_{\text{M}}w \right); \tag{15}$$

$$\Delta p_{o}^{\text{typ}} = \frac{0,000077 p w^{1.75}}{t + 273} \left(\frac{\Pi^{1.25} L w^{0.25} v^{0.25}}{A^{1.25}} \right) + 0,00062 \xi_{\text{M}} \,. \tag{16}$$

Оценим влияние атмосферного давления на потери давления при ламинарном и турбулентном режимах, принимая: $p_1 = 97307 \text{ Па}$; $p_2 = 102641 \text{ Па}$ (остальные исходные данные оставим без изменения).

Для ламинарного режима получены следующие результаты:

$$\Delta p_{01}^{\pi_{AM}} = \frac{0,00065 \cdot 0,6 \cdot 97309 \cdot (2,649 - 0,5)}{10 + 273} \times \\ \times \left(\frac{0,00197 \cdot 7 \cdot 14,16 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,098 \ \Pi a;$$
$$\Delta p_{02}^{\pi_{AM}} = \frac{0,00065 \cdot 0,6 \cdot 102641 \cdot (2,649 - 0,5)}{10 + 273} \times \\ \times \left(\frac{0,00197 \cdot 7 \cdot 14,16 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,103 \ \Pi a;$$
$$\Delta p_{0,c0}^{\pi_{AM}} = 0,101 \ \Pi a.$$

67

Для турбулентного режима получены следующие результаты:

$$\Delta p_{o1}^{\text{Typ}} = \frac{0,000036 \cdot 97309 \cdot (2,649 - 0,5) \cdot 0,6^{1.75}}{10 + 273} \times \frac{0,0094^{1.25} \cdot 7 \cdot 0,6^{0.25} \cdot 14,16^{0.25}}{1000000^{0.25} \cdot 0,0000071^{1.25}} = 32,1 \,\Pi a;$$

$$\Delta p_{o2}^{\text{Typ}} = \frac{0,000036 \cdot 102641 \cdot (2,649 - 0,5) \cdot 0,6^{1.75}}{10 + 273} \times \frac{0,0094^{1.25} \cdot 7 \cdot 0,6^{0.25} \cdot 14,16^{0.25}}{1000000^{0.25} \cdot 0,0000071^{1.25}} = 34,08 \,\Pi a;$$

$$\Delta p_{ocn}^{\text{Typ}} = 33,08 \,\Pi a.$$

Приведенные расчеты показывают, что потери давления при ламинарном и турбулентном режимах зависят от барометрического давления. Для выполнения точных расчетов следует использовать уравнения (12) и (14). При давлении p = 101325 Па эти формулы для ламинарного и турбулентного режимов имеют вид:

$$\Delta p_{\rm o}^{\rm nam} = \frac{65,86w(2,649-\phi)}{t+273} \left(\frac{0,00197L\Pi^2 \nu}{A^2} + \xi_{\rm M} w \right); \tag{17}$$

$$\Delta p_{o}^{\text{ryp}} = \frac{3,647 w^{1.75} (2,649 - \phi)}{t + 273} \left(\frac{\Pi^{1.25} L w^{0.25} v^{0.25}}{A^{1.25}} \right) + 0,00062 \xi_{\text{M}} \,. \tag{18}$$

Формулы (15) и (16) или (17) и (18) при $\phi = 0,5 = \text{const}$ и p = 101325 = const можно представить в виде:

$$\Delta p_{\rm o}^{\rm nam} = \frac{140,84w}{t+273} \left(\frac{0,00197L\Pi^2 v}{A^2} + \xi_{\rm M} w \right); \tag{19}$$

$$\Delta p_{o}^{\text{Typ}} = \frac{7,802w^{1.75}}{t+273} \left(\frac{\Pi^{1.25}Lw^{0.25}v^{0.25}}{A^{1.25}} \right) + 0,00062\xi_{\text{M}} \,. \tag{20}$$

Оценим влияние вязкости на потери давления при ламинарном и турбулентном режимах, принимая: $v_1 = 11,994 \cdot 10^{-6} \text{ m}^2/\text{c}$; $t_1 = -24 \text{ °C}$; $v_2 = 14,88 \cdot 10^{-6} \text{ m}^2/\text{c}$; $t_2 = 18 \text{ °C}$ (остальные исходные данные оставим без изменения).

Для ламинарного режима получены следующие результаты:

$$\begin{split} \Delta p_{o1}^{nam} &= \frac{0,00065 \cdot 0,6 \cdot 101325 \cdot (2,649 - 0,5)}{273 - 24} \times \\ &\times \left(\frac{0,00197 \cdot 7 \cdot 11,994 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,0988 \ \Pi a; \\ \Delta p_{o2}^{nam} &= \frac{0,00065 \cdot 0,6 \cdot 101325 \cdot (2,649 - 0,5)}{273 + 18} \times \\ &\times \left(\frac{0,00197 \cdot 7 \cdot 14,88 \cdot 0,0094^2}{10^6 \cdot 0,0000071^2}\right) = 0,1048 \ \Pi a; \\ &\Delta p_{o.ep}^{nam} = 0,102 \ \Pi a. \end{split}$$

Для турбулентного режима получены следующие результаты:

$$\Delta p_{01}^{\text{ryp}} = \frac{0,000036 \cdot 101325 \cdot (2,649 - 0,5)}{273 - 24} \times \frac{0,0094^{1,25} \cdot 7 \cdot 0,6^{0,25} \cdot 11,994^{0,25}}{1000000^{0,25} \cdot 0,0000071^{1,25}} = 33,9 \text{ IIa};$$
$$\Delta p_{02}^{\text{ryp}} = \frac{0,000036 \cdot 101325 \cdot (2,649 - 0,5) \cdot 0,6^{1,75}}{273 + 18} \times \frac{0,0094^{1,25} \cdot 7 \cdot 0,6^{0,25} \cdot 14,88^{0,25}}{1000000^{0,25} \cdot 0,0000071^{1,25}} = 30,4 \text{ IIa};$$

$$\Delta p_{0.cp}^{TYP} = 32,1$$
 Па.

При средних значениях: $\phi = 0.5$; p = 101325 Па; t = -2 °C; $v = 13.53 \cdot 10^{-6}$ м²/с формулы (12) и (14) можно записать:

$$\Delta p_{o}^{\pi_{\text{AM}}} = 0,0139 \cdot 10^{-6} \left(\frac{wL\Pi^{2}}{A^{2}} \right) + 0,522w^{2}\xi_{\text{M}}; \qquad (21)$$

$$\Delta p_{o}^{\text{Typ}} = \frac{0.00179 w^{2} \Pi^{1.25} L}{A^{1.25}} + 0.000018 w^{1.75} \xi_{\text{M}} \,. \tag{22}$$

По формуле (22) построены зависимости (рис. 3...6) общих потерь давления для ламинарного режима.

69

Рис. 3. Потери давления при ламинарном режиме: $1 - A = 0, 1 \text{ m}^2; 2 - 0, 2 \text{ m}^2; 3 - 0, 3 \text{ m}^2; 4 - 0, 4 \text{ m}^2; w = 0, 2 \text{ м/c}; \Pi = 4 \text{ м}$

4 8 12 16 20 24 28 L, м *Рис. 4.* Потери давления при ламинарном режиме: $1 - A = 0, 1 \text{ м}^2$; $2 - 0, 2 \text{ м}^2$; $3 - 0.3 \text{ м}^2$; $4 - 0.4 \text{ м}^2$; w = 0.4 м/c; $\Pi = 8 \text{ м}$

Рис. 5. Потери давления при ламинарном режиме: $1 - A = 0,1 \text{ m}^2$; $2 - 0,2 \text{ m}^2$; $3 - 0,3 \text{ m}^2$; $4 - 0,4 \text{ m}^2$; w = 0,6 м/c; $\Pi = 15 \text{ m}$

Рис. 6. Потери давления при ламинарном режиме: $1 - A = 0,1 \text{ м}^2$; $2 - 0,2 \text{ M}^2$; $3 - 0,3 \text{ M}^2$; $4 - 0,4 \text{ M}^2$; w = 0,8 м/c; $\Pi = 20 \text{ м}$

Приведенные зависимости и графики позволяют исследовать, оценивать и прогнозировать условия вентилирования внутренних помещений жилых зданий. Эта методика применима также для анализа воздушных потоков в производственных зданиях.

ЛИТЕРАТУРА

1. Самойлович Г.С. Гидрогазодинамика. – М.: Машиностоение, 1990. 2. Дейч М.Е., Зарянкин А.Е. Гидрогазодинамика. – М.: Энергоатомиздат, 1984.

Представлена кафедрой теплогазоснабжения и вентиляции

Поступила 24.09.2003