КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ТЕРМОУПРУГОСТИ СЛОЖНЫХ ПРОСТРАНСТВЕННЫХ ДЕТАЛЕЙ

Докт. физ.-мат. наук, проф. ЧИЧКО А. Н., канд. техн. наук ЯЦКЕВИЧ Ю. В., докт. техн. наук, проф. СОБОЛЕВ В. Ф., ЧИЧКО О. И.

Белорусский национальный технический университет

Развитие оперативной и дисковой памяти ПЭВМ открывает широкие возможности расчетов объектов с пространственно распределенными параметрами, в частности для решения задач термоупругости деталей, проходящих термическую обработку. Данный аспект крайне важен для задач энергосбережения, так как позволяет предложить новые подходы оптимизации и выявления путей моделирования процессов термоупругости деталей, нагреваемых в печи. В работе рассматриваются подход, синтезирующий математические уравнения теории упругости [1, 2], и идеи клеточного автомата, развиваемые в задачах гидродинамического движения реальных расплавов в сложных структурах [3, 4].

Цель настоящей работы – разработка нового подхода, основанного на синтезе численных методов и клеточно-автоматных правилах в применении к задачам моделирования процессов термической обработки деталей сложной пространственной конфигурации.

В качестве объекта исследования была выбрана стальная деталь, имеющая сложный внутренний контур, состоящий из каналов переменного сечения (рис. 1). Внутренняя полость детали представляет большое количество каналов различного сечения, что приводит к очень сложной пространственной конфигурации температурного поля и является причиной возникновения неоднородного поля напряжений. Последнее может стать причиной зарождения трещин в процессе эксплуатации деталей. С практической точки зрения следует отметить, что эффективность проводимой механической обработки не всегда дает желаемый результат, так как напряженное состояние может проникать на большие глубины, затрагивающие базовую конфигурацию детали.

В качестве базовой математической модели для решения тепловой задачи (моделирование охлаждения) использовали уравнение теплопроводности, учитывающее кристаллизацию и структурное превращение аустенит – перлит [5, 6]:

$$\frac{\partial T}{\partial \tau} = \frac{1}{c(T)\rho} \left(\frac{\partial \left(\lambda(T)\frac{\partial T}{\partial x}\right)}{\partial x} + \frac{\partial \left(\lambda(T)\frac{\partial T}{\partial y}\right)}{\partial y} + \frac{\partial \left(\lambda(T)\frac{\partial T}{\partial z}\right)}{\partial z} + F \right), \quad (1)$$

где τ – время; *x*, *y*, *z* – декартовы координаты; ρ – плотность материала; *T* – температура; $\lambda(T)$ – коэффициент теплопроводности материала; c(T) – удельная теплоемкость материала; *F* – функция объемной плотности мощности, определяющая структурное превращение в материале [6].

Puc. 1

Температурное поле было основой для моделирования трехмерных полей напряжения и структурного поля. В качестве основной модели термоупругости для расчета напряжений использовались уравнения равновесия с группой уравнений, связывающих нормальные и тангенциальные напряжения с их деформационными характеристиками [7, 8]:

$$\begin{cases} \frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0; \\ \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = 0; \\ \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} = 0; \end{cases}$$

$$\begin{cases} \frac{\partial \tau_{xy}}{\partial y} - \frac{\partial \tau_{yx}}{\partial z} = 0; \\ \frac{\partial \tau_{zy}}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} = 0; \\ \frac{\partial \tau_{zz}}{\partial z} - \frac{\partial \tau_{zz}}{\partial z} = 0; \end{cases}$$

$$(2)$$

$$\begin{cases} \sigma_{x} = E\varepsilon_{x} = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial u}{\partial x} - \alpha \theta \right); \\ \sigma_{y} = E\varepsilon_{y} = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial v}{\partial y} - \alpha \theta \right); \\ \sigma_{z} = E\varepsilon_{z} = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial w}{\partial z} - \alpha \theta \right); \\ \tau_{xy} = G\gamma_{xy} = G \left(\frac{\partial u}{\partial y} - \varphi_{z} \right); \\ \tau_{yx} = G\gamma_{yx} = G \left(\frac{\partial v}{\partial x} + \varphi_{z} \right); \\ \tau_{yz} = G\gamma_{yz} = G \left(\frac{\partial v}{\partial z} + \varphi_{x} \right); \\ \tau_{zy} = G\gamma_{zy} = G \left(\frac{\partial w}{\partial y} - \varphi_{x} \right); \\ \tau_{zx} = G\gamma_{zx} = G \left(\frac{\partial w}{\partial x} + \varphi_{y} \right); \\ \tau_{xz} = G\gamma_{zx} = G \left(\frac{\partial u}{\partial z} - \varphi_{y} \right), \end{cases}$$
(4)

где ε_x , ε_y , ε_z – нормальные деформации по осям x, y, z; τ_{xy} , τ_{yz} , τ_{zx} , τ_{yx} , τ_{zy} , τ_{zz} , τ_{zx} , τ_{zx} , τ_{zy} , τ_{zz} , τ_{zy} , τ_{zy} , τ_{zy} , τ_{zy} , τ_{zy} , τ_{zz} , τ_{zy} , $\tau_$

Системы уравнений (2)–(4) описывают трехмерное распределение напряжений и деформаций при охлаждении детали. Система (4) описывает среду Гука. Остаточная температура вычислялась из состояния теплового поля

$$\theta = T - T_0 \,, \tag{5}$$

где T_0 – температура начала моделирования.

В качестве граничных условий для тепловой задачи использовали условия 1-го рода. Причем использовались два типа границы: деталь – печная среда, печная среда – воздух. В качестве начальных условий для детали использовали температуру 820 °С. Процесс расчета напряжений и температур состоял из следующих этапов. На первом этапе строилось 3*d*-изображение в графическом редакторе Solid Works и сохранялось в формате .stl. На втором этапе деталь вместе со средой разбивалась на трехмерную сетку $\Delta x = \Delta y = \Delta z = 4$ мм общим размером 70×106×56 = 415520 элементов. На третьем этапе проводился процесс моделирования охлаждения детали, который проходил в масле с температурой 50 °C. В качестве теплофизических характеристик использовали следующие данные (материал – 12XH3A): удельная теплоемкость – c = 1029 Дж/(кг · °C); теплопроводность – $\lambda = 29$ Вт/м; плотность – $\rho = 7150$ кг/м³; температура фазового перехода – $T_n = 727$ °C; плотность энергии перехода – $Q_n = 627$ кДж/кг; коэф-

фициент линейного расширения – $\alpha = 11,9\cdot 10^{-6}$ К⁻¹; модуль Юнга – E == 19,5 10^{10} Па; модуль сдвига – G = 0,8 10^{10} Па. В качестве начальных условий для характеристик напряжений использовали: перемещения центров элементов – u = v = w = 0; тангенсы углов поворота элементов – $\varphi_r =$ $= \phi_v = \phi_z = 0$. Элементам среды вокруг «Пуансона» присваивались теплофизические свойства масла: удельная теплоемкость – $c = 1300 \, \text{Дж/(кг} \cdot \text{°C})$; теплопроводность – $\lambda = 1.5$ Вт/м; плотность – $\rho = 900$ кг/м³. В качестве граничного условия при расчете температурных полей принималась постоянная температура масла $T = T_0 = 50$ °C. Граничные условия при расчете полей деформаций и напряжений принимались равными $\varepsilon_x = \varepsilon_y = \varepsilon_z = 0$, $\tau_{xy} = \tau_{yz} = \tau_{zx} = \tau_{yx} = \tau_{zy} = \tau_{zz} = 0$. Расчет проводился на основе специально разработанной программы, основу которой составляли численные схемы уравнений (1)-(6), дополненные набором клеточно-автоматных правил. В результате было рассчитано трехмерное распределение полей температур, полей напряжений по компонентам (σ_x , σ_y , σ_z , γ_{xy} , γ_{yz} , γ_{zx} , γ_{yx} , γ_{zy} , γ_{xz}), а также деформаций (ε_x , ε_y , ε_z). Каждая из характеристик вычислена в зависимости от времени.

На рис. 2 представлены зависимости напряжений от времени в детали «Пуансон» на этапе охлаждения для различных пространственных точек.

Рис. 2

Как видно, напряжения изменяются с экстремумом практически для всех точек, выделенных на сечениях детали. Причем, чем ближе к границе раздела деталь – воздух, тем больше экстремум. Причина этого – градиенты температур, которые наиболее ярко проявляются на границе раздела. На рис. 3 представлено распределение напряжений по глубине одного из сече-

ний. Видно, что зависимость $\sigma = f(l)$ носит сложный характер. Это очень заметно на цветном изображении практически для всех рассмотренных нами сечений. Причем, чем ближе элементы детали к воздуху, тем больше величина напряжений. Для детализации сжимающих напряжений на рис. 4 представлено распределение значений напряжений по выделенным точкам деталей в момент времени $\tau = 44$ с (10^8 Па). Проведенные расчеты показали, что с помощью разработанного подхода можно получать огромное количество информации о напряжениях, деформациях, температурах в любом элементе сложной пространственной структуры, которая является в данном случае деталью. Это может быть использовано для прогноза процесса трещинообразования и выбора режима механической обработки.

72

	1	2	3	4	5	6	7	8	9.
1				22,076	9,3523	5,8303	7,1778	4,4115	3,9562
2					4,7814	6,0446	9,9825	8,9185	8,8836
3			8,9172	9,2094	8,853	7,1295	9,0106	8,7365	10,828
4	6,576	2,888	3,2853	3,1199	2,6706		14,031		
5	6,8542	3,6645	3,0684	3,0984	3,1442	8,6533	11,685		
6	6,5748	5,6501	8,1525		4,2948	4,9741			7,2369
7	7,2582		9,3894	5,6124	4,0779	5,0297	10,34	7,6233	7,1928
8	7,4761	3,8565	4,265	4,0535	3,9051		5,2603	6,1804	6,3779
9	7,7051	4,2869	3,323	3,8472	6,1085	4,2373	4,4658	6,5354	7,6289
10	7,6499	4,625	3,7393	4,0886		4,228	5,1968		
11	7,6905	4,3782		2,97	2,3331	3,3962		5,8275	5,8989
12	7,6521	3,4868	1,903	1,9314	2,2071	4,1816	2,9407	4,196	5,1982
13	6,6092	3,945	3,7345	4,4799		4,6035	4,6631	6,2288	6,8465
14	6,2842	3,1928	3,9269	4,6037	6,2255	4,5542	4,911	6,5486	7,2734
15	5,7397	3,9424		4,1089	4,0626	4,35	4,8148	6,4296	6,9932
16	5,9246	5,1754	5,0897	3,3305	3,0942	3,4795	3,8331	5,2734	5,7823
17	7,1424	5,4558	4,8239	4,4108	4,5825	3,4064	3,8462	4,4639	4,5965
18	10,178	7,5613	5,2303	5,1391	5,4014	3,6714	2,4595	2,2585	2,586
19						6,4202	4,6465	4,3043	5,003

Puc. 4

На базе этого метода в БНТУ разрабатывается компьютерная система «ПроТерм», с помощью которой возможно моделировать процессы, протекающие в деталях, проходящих термическую обработку. Это открывает перспективы в оптимизации термических режимов и внутренней пространственной структуры полостей матриц и пресс-форм.

ЛИТЕРАТУРА

1. Бленд Д. Теория линейной вязко-упругости. – М., 1965.

2. Боли Б., Уейнер Дж. Теория температурных напряжений. – М., 1964. – 520 с.

3. Чичко А. Н., Лихоузов С. Г. Клеточно-автоматное моделирование процесса течения расплава в форме //Доклады НАН Беларуси. – 2001. – Т. 45, № 4. – С. 110–114.

4. Чичко А. Н., Дроздов Е. А. Новые подходы в клеточно-автоматном моделировании процесса трехмерного кластерообразования в цветных сплавах // Моделирование и информационные технологии проектирования / Институт технической кибернетики. – Мн., 2000. – С. 140–146.

5. Чичко А. Н., Яцкевич Ю. В. Трехмерное компьютерное моделирование охлаждения отливки и выбор питателя литниковой системы на основе уравнения теплопроводности // ИФЖ. – 1999. – Т. 72. – С. 797–801.

6. Чичко А. Н., Яцкевич Ю. В. О взаимосвязи электронного строения зародыша 3*d*-элемента и параметров тепловой зоны системы «расплав – зародыш» // Металлы. – 1999. – № 6. – С. 42–45.

7. Чичко А. Н., Дроздов Е. А., Чичко О. И. Трехмерное математическое моделирование термоупругих характеристик сплава в условиях многократных термических нагрузок // Весці НАН Беларусі. Сер. фіз.-тэхн. навук. – 2002. – № 2. – С. 111–116.

8. Чичко А. Н., Яцкевич Ю. В., Соболев В. Ф. Трехмерное математическое моделирование термонапряженного состояния стальной детали // Литье и металлургия. – 2001. – № 4. – С. 82–84.

Представлена кафедрой машин и технологии литейного производства

Поступила 19.11.2002