выводы

1. Установлено, что для плоских контактных соединений при расчете их переходных электромагнитных характеристик при коротких замыканиях можно ограничиваться учетом только величин параметров поля вынужденного режима.

2. В плоских контактах области перетекания тока из одного проводника в другой слабо зависят от характера и величины токов переходного режима и остаются практически неизменными на протяжении всего переходного процесса.

ЛИТЕРАТУРА

1. Бредихин А. М., Хомяков М. В. Электрические контактные соединения. – М.: Энергия, 1980. – 168 с.

2. Герасимович А. Н., Герасимович Д. А., Носайрат Фаиз. Нагрев многополосных шинопроводов при коротких замыканиях // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2002. – № 1. – С. 9–19.

3. М е т о д расчета переходных электромагнитных процессов в многослойных структурах плоских контактных соединений / А. Н. Герасимович, Д. А. Герасимович, М. А. Мишкина и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2002. – № 6. – С. 27–35.

4. Правила устройства электроустановок. – М.: Энергоатомиздат, 1987. – 648 с.

5. Я к о в л е в Г. В. Электромагнитные характеристики плоских контактных соединений разъединителей на переменном токе: Автореф. дис. ... канд. техн. наук: 05.14.02 / БГПА. – Мн., 2001. – 21 с.

6. Герасимович Д. А., Носайрат Фаиз. Электромагнитные характеристики шины прямоугольного профиля в переходных режимах // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2000. – № 2. – С. 15–24.

Представлена кафедрой электрических станций

Поступила 12.12.2002

УДК 621.313.3

РАСЧЕТ МАГНИТНОЙ ЦЕПИ ОДНОФАЗНОГО АСИНХРОННОГО ДВИГАТЕЛЯ С РАСЩЕПЛЕННЫМИ ПОЛЮСАМИ

Доктора техн. наук МАЛЯР В. С., ГЛУХИВСКИЙ Л. И., кандидаты техн. наук МАЛЯР А. В., ГРЕЧИН Д. П., инж. ГАВДЬО И. Р.

Национальный университет «Львовская политехника»

Однофазные асинхронные двигатели с расщепленными (экранированными) полюсами (ОАДРП) просты в изготовлении и надежны в эксплуатации, поэтому находят широкое применение в различных электроприводах малой мощности. Магнитная система таких двигателей выполняется, как правило, двух- и реже четырехполюсной. Статор выполняется с явно выраженными полюсами с сосредоточенной обмоткой, питаемой синусоидальным напряжением, а часть каждого полюса охвачена короткозамкнутым витком. Ротор – цилиндрический с шихтованным магнитопроводом и беличьей клеткой. Кроме того, между полюсными наконечниками размещены магнитные шунты в виде пакетов из листовой стали (рис.1). Таким образом, ОАДРП имеет электрическую и магнитную несимметрии, что усложняет анализ процессов в нем.

Рис. 1. Эскиз магнитной системы двигателя: 1 – лист статора; 2 – экранирующий виток; 3 – обмотка возбуждения; 4 – магнитный шунт; 5 – лист статора; 6 – короткозамкнутая обмотка ротора

Теория рабочего процесса ОАДРП, основанная на методах вращающихся в противоположные стороны магнитных полей и симметричных составляющих [1], дает лишь качественную картину явлений и не может удовлетворять потребностям практики проектирования ОАДРП с заданными свойствами. Поэтому в технической литературе известны методы анализа ОАДРП, в которых учитывается насыщение магнитопровода. В частности, в работе [2] предложен аналитический метод расчета магнитного поля с учетом наличия шунтов. При этом учитывается только насыщение, создаваемое потоком обмотки возбуждения. В [3] электромагнитный расчет ОАДРП выполняется на основании использования уточненной схемы замещения магнитной цепи. Насыщение учитывается путем использования коэффициентов насыщения, определение которых представляет весьма сложную задачу. Так называемые средние коэффициенты насыщения используются и в [4]. Все перечисленные работы требуют использования упрощающих допущений и не могут учесть неодинаковое, но местами сильное насыщение различных участков магнитопровода, что отражается на точности расчетов режимов работы ОАДРП, особенно динамических. В то же время расчет магнитного поля двигателя с использованием уравнений Максвелла весьма трудоемок. Поэтому, на наш взгляд, наиболее приемлемый путь решения задачи - это составление и расчет схемы замещения магнитопровода с достаточно высоким уровнем его детализации. Такой подход дает возможность с достаточной для практики точностью рассчитать магнитное поле машины с учетом реального негармонического распределения намагничивающих сил ее контуров, а также неравномерного насыщения различных участков магнитопровода и на его основе электромагнитные параметры и потокосцепления обмоток.

Для конкретности будем рассматривать двухполюсный ОАДРП. Поскольку короткозамкнутая обмотка ротора симметричная, ее без ущерба для точности можно заменить двумя взаимно перпендикулярными синусоидально распределенными обмотками d и q. Кроме того, зубцовый слой ротора заменим однородным слоем, характеристика намагничивания которого в радиальном направлении совпадает с таковой для реального зубцового слоя. Она рассчитывается на одно зубцовое деление «зубец – паз» с учетом вытеснения потока в паз и представляется в виде нелинейной зависимости $F = F(\Phi)$, где F – падение магнитного напряжения в эквивалентном зубцовом слое, а Ф – элементарный магнитный поток. Такими же зависимостями представим характеристики намагничивания и других стальных участков магнитопровода. Им на схеме замещения соответствуют нелинейные сосредоточенные магнитные сопротивления, а участкам магнитной цепи, не содержащим стали, соответствуют линейные магнитные сопротивления. Магнитодвижущие силы (МДС), создаваемые токами контуров, будем включать последовательно в соответствующие ветви магнитной цепи. МДС контуров статора представляем сосредоточенными, а ротора – распределенными по гармоническому закону.

При составлении схемы замещения магнитной цепи ОАДРП ротор разбит на 2s секторов (по s секторов на полюсное деление). Из них: k секторов находится под магнитным шунтом; m секторов – под пазом, в котором размещен короткозамкнутый виток; l секторов – под экранированной частью полюса; n секторов – под неэкранированной частью полюса. На схеме (рис. 2) k = 2; l = 2; m = 1; n = 3; s = k + m + l + n = 8.

В схему замещения магнитной цепи входят магнитные сопротивления: $R_{aj} (j = \overline{1,16}) - 2s$ участков ярма ротора; $R_{\delta j}$, $R_{zj} (j = \overline{1,16}) - 2s$ секторов воздушного зазора и зубцовой зоны соответственно; $R_{uj} (j = \overline{1,16}) -$ участков шунта; $R_{unn} -$ стыка шунта с полюсным наконечником; $R_{\rm B} -$ паза с короткозамкнутым витком; $R_{n1} (R_{n4}) -$ участка полюса от ярма статора до короткозамкнутого витка; $R_{n2} (R_{n5}) -$ то же экранированной части полюса; $R_{n3} (R_{n6})$ – то же неэкранированной части полюса; R_0 – путей потоков рассеяния между полюсом и ярмом статора; $R_{sj} (j = \overline{1,16}) -$ участков ярма статора, а также МДС: $T_{n1} = T_{n2} = w_n i_n -$ размещенной на полюсе обмотки возбуждения с числом витков w_n и током i_n ; $T_{e1} = T_{e2} = i_e -$ размещенного на части полюса короткозамкнутого витка с током i_e ; $T_{pj} = (j = \overline{1,2s}) -$ обмотка ротора, которая для *j*-го сектора определяется через токи продольного i_d и поперечного i_q контуров ротора по формуле

$$T_{pj} = \frac{2w}{\pi p} (i_d \cos \gamma_j + i_q \sin \gamma_j),$$

где w – число витков эквивалентной обмотки ротора; p – число пар полюсов; γ – угол, определяющий положение *j*-го сектора относительно оси *d*.

Рис. 2. Схема замещения магнитной цепи

В общем случае схема замещения содержит 2s + k + m + 8 магнитных потоков ветвей, которые можно определить через s + 4 контурных магнитных потоков. Это обусловлено тем, что картина магнитного поля под различными полюсами повторяется, а значит, можно ограничиться контурами, которые относятся к одному полюсному делению, и использовать при определении потоков в ветвях условия симметрии, которые имеют вид:

$$\Phi_{\delta s+j} = -\Phi_{\delta j}; \ F_{zs+j}[\Phi_{\delta s+j}] = -F_{zj}[\Phi_{\delta j}]; \ T_{ps+j} = -T_{pj};$$

$$\begin{split} \Phi_{as+j} &= -\Phi_{aj} ; \ F_{as+j}[\Phi_{as+j}] = -F_{aj}[\Phi_{aj}] \quad (j = 1, ..., s); \\ \Phi_{uk+1+j} &= -\Phi_{uj} ; \ F_{uk+1+j}[\Phi_{uk+1+j}] = -F_{uj}[\Phi_{uj}] \quad (j = 1, ..., s); \\ \Phi_{n3+j} &= -\Phi_{nj} ; \ F_{n3+j}[\Phi_{n3+j}] = -F_{nj}[\Phi_{nj}] \quad (j = 1, ..., 3); \\ T_{n2} &= -T_{n1}; \ T_{e2} &= -T_{e1}; \\ \Phi_{n3+j} &= -\Phi_{nj} ; \ F_{n3+j}[\Phi_{n3+j}] = -F_{nj}[\Phi_{nj}] \quad (j = 1, ..., 3); \\ \Phi_{o2+j} &= -\Phi_{oj} \quad (j = 1, 2); \ \Phi_{ap} = 0; \\ \Phi_{ps+j} &= -\Phi_{pj} \quad (j = 1, ..., s); \ \Phi_{c4+j} = -\Phi_{cj} \quad (j = 1, ..., 4), \end{split}$$

где квадратные скобки использованы для записи соответствующих нелинейных функциональных зависимостей.

С учетом (1) составленная по методу контурных потоков нелинейная система уравнений, описывающая магнитную цепь ОАДРП, имеет вид:

$$\begin{split} R_{\delta i} (\Phi_{p1} + \Phi_{ps}) + F_{z1} [\Phi_{\delta i}] + F_{a1} [\Phi_{a1}] + F_{z2} [\Phi_{\delta 2}] + \\ &+ R_{\delta 2} (\Phi_{p1} - \Phi_{p2}) + F_{ui1} [\Phi_{ui1}] + T_{p1} - T_{p2} = 0; \\ R_{\delta 2} (\Phi_{p2} - \Phi_{p1}) + F_{z2} [\Phi_{\delta 2}] + F_{a2} [\Phi_{a2}] + F_{z3} [\Phi_{\delta 3}] + \\ &+ R_{\delta 2} (\Phi_{p2} - \Phi_{p3}) + F_{u2} [\Phi_{u2}] + T_{p2} - T_{p3} = 0; \\ \vdots \\ R_{\delta k-1} (\Phi_{pk-1} - \Phi_{pk-2}) + F_{zk-1} [\Phi_{\delta k-1}] + F_{ak-1} [\Phi_{ak-1}] + F_{zk} [\Phi_{\delta k}] + \\ &+ R_{\delta k} (\Phi_{pk-1} - \Phi_{pk}) + F_{uk-1} [\Phi_{uk-1}] + T_{pk-1} - T_{pk} = 0; \\ R_{\delta k} (\Phi_{pk} - \Phi_{pk-1}) + F_{zk} [\Phi_{\delta k}] + F_{ak} [\Phi_{ak}] + F_{zk+1} [\Phi_{\delta k+1}] + \\ &+ R_{\delta k} (\Phi_{pk} - \Phi_{pk-1}) + F_{zk} [\Phi_{uk}] + R_{ui} (\Phi_{pk} - \Phi_{c1}) + T_{pk} - T_{pk+1} = 0; \\ R_{\delta k+1} (\Phi_{pk} - \Phi_{pk+1}) + F_{zk+1} [\Phi_{\delta k+1}] + F_{ak+1} [\Phi_{ak+1}] + F_{zk+2} [\Phi_{\delta k+2}] + \\ &+ R_{\delta k+2} (\Phi_{pk+1} - \Phi_{pk+2}) + T_{pk+1} - T_{pk+2} = 0; \\ \vdots \\ R_{\delta k+1} (\Phi_{pk+1} - \Phi_{pk+1-i}) + F_{zk+1} [\Phi_{\delta k+1}] + F_{ak+1} [\Phi_{ak+1}] + F_{zk+1+i} [\Phi_{\delta k+1+i}] + \\ &+ R_{\delta k+1+i} (\Phi_{pk+1} - \Phi_{pk+1+i}) + (R_{k}/2m) (\Phi_{pk+1} - \Phi_{c3}) + T_{pk+1} - T_{pk+1+2} [\Phi_{\delta k+1+2}] + \\ &+ R_{\delta k+1+i} (\Phi_{pk+1+i} - \Phi_{pk+1+2}) + (R_{k}/m) (\Phi_{pk+1+i} - \Phi_{c3}) + T_{pk+1+i} - T_{pk+1+2i} = 0; \end{split}$$

:

(2) 21

$$\begin{split} R_{\delta s-n-1}(\Phi_{ps-n-1} - \Phi_{ps-n-2}) + F_{zs-n-1}[\Phi_{\delta s-n-1}] + F_{as-n-1}[\Phi_{as-n-1}] + F_{zs-n}[\Phi_{\delta s-n}] + \\ &+ R_{\delta s-n}(\Phi_{ps-n-1} - \Phi_{ps-n}) + (R_{a}/m)(\Phi_{ps-n-1} - \Phi_{c3}) + T_{ps-n-1} - T_{ps-n} = 0; \\ R_{\delta s-n}(\Phi_{ps-n} - \Phi_{ps-n-1}) + F_{zs-n}[\Phi_{\delta s-n}] + F_{as-n}[\Phi_{as-n}] + F_{zs-n+1}[\Phi_{\delta s-n+1}] + \\ &+ R_{\delta s-n+1}(\Phi_{ps-n} - \Phi_{ps-n+1}) + (R_{a}/2m)(\Phi_{ps-n} - \Phi_{c3}) + T_{ps-n} - T_{ps-n+1} = 0; \\ R_{\delta s-n+1}(\Phi_{ps-n+1} - \Phi_{ps-n}) + F_{zs-n+1}[\Phi_{\delta s-n+1}] + F_{as-n+1}[\Phi_{as-n+1}] + \\ &+ F_{zs-n+2}[\Phi_{\delta s-n+2}] + R_{\delta s-n+2}(\Phi_{ps-n+1} - \Phi_{ps-n+2}) + T_{ps-n+1} - T_{ps-n+2} = 0; \\ \vdots \\ R_{\delta s}(\Phi_{ps} - \Phi_{ps-1}) + F_{zs}[\Phi_{\delta s}] + F_{as}[\Phi_{as}] + F_{z1}[\Phi_{\delta 1}] + \\ &+ R_{\delta 1}(\Phi_{cs} + \Phi_{p1}) + F_{uuk+1}[\Phi_{uuk+1}] + R_{uu}(\Phi_{ps} + \Phi_{c1}) + T_{ps} - T_{ps+1} = 0; \\ R_{0}(\Phi_{c1} - \Phi_{c2}) + F_{n2}[\Phi_{n2}] + R_{u}(\Phi_{c1} - \Phi_{pk}) + R_{u}(\Phi_{c1} + \Phi_{ps}) + \\ &+ \sum_{i=1}^{k} F_{uui}[\Phi_{uui}] - F_{uuk+1}[\Phi_{uuk+1}] - F_{n3}[\Phi_{n3}] + R_{0}(\Phi_{c1} + \Phi_{c4}) + F_{s1}[\Phi_{s1}] - T_{e1} = 0; \\ R_{0}(\Phi_{c2} - \Phi_{c1}) + F_{s1}[\Phi_{s1}] + F_{n2}[\Phi_{n3}] + F_{n3}[\Phi_{n3}] + T_{e1} = 0; \\ R_{n1}[\Phi_{n1}] + F_{n1}[\Phi_{n1}] + R_{0}(\Phi_{c4} + \Phi_{c1}) + T_{n1} = 0. \end{split}$$

Для решения нелинейной системы (1) используем итерационный метод Ньютона, согласно которому вектор $\vec{\Phi}_{\eta} \left(\eta = \overline{1,s+4} \right)$ контурных магнитных потоков определяется в соответствии с формулами:

$$A\overrightarrow{\Delta \Phi}_{\eta}^{\xi} = \vec{N}^{\xi} \left(\vec{\Phi}_{\eta}^{\xi} \right); \quad \vec{\Phi}_{\eta}^{\xi+1} = \vec{\Phi}_{\eta}^{\xi} - \overrightarrow{\Delta \Phi}_{\eta}^{\xi}, \tag{3}$$

где $\vec{\Phi}_{\eta}^{\xi}$ – ξ -е приближение вектора $\vec{\Phi}_{\eta}$, а $\vec{N}^{\xi}\vec{\Phi}_{\eta}^{\xi}$ – соответствующий ему вектор невязок системы (2); A – матрица Якоби этой системы, которую представим в виде четырех блоков:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}.$$

Блок A_{11} – это квадратная матрица размерности *s*, которую можно представить в виде суммы

22

 $A_{11} = A_{11}' + A_{11}'',$

где

	E_1	$-R_{\delta 2}-R_{z2}$				$R_{\delta 1} + R_{z1}$
	$-R_{\delta 2}-R_{z2}$	E_2	$-R_{\delta 3}-R_{z3}$			
4 ' -		$-R_{\delta 3}-R_{z3}$	E_3			Ň
Δ ₁₁ –	:	:	•	•••		÷
					E_{s-1}	$-R_{\delta s}-R_{zs}$
	$R_{\delta 1} + R_{z1}$				$-R_{\delta s}-R_{zs}$	E_s

Ее диагональные элементы определяются по формулам:

$$\begin{split} E_1 &= R_{\delta 1} + R_{z1} + R_{\delta 2} + R_{z2} + R_{a1} ;\\ E_2 &= R_{\delta 2} + R_{z2} + R_{\delta 3} + R_{z3} + R_{a2} ;\\ E_3 &= R_{\delta 3} + R_{z3} + R_{\delta 4} + R_{z4} + R_{a3} ;\\ \vdots\\ E_{s-1} &= R_{\delta s-1} + R_{zs-1} + R_{\delta s} + R_{zs} + R_{as-1} ;\\ E_s &= R_{\delta s} + R_{zs} + R_{\delta 1} + R_{z1} + R_{as} .\end{split}$$

$$A_{11}'' = \operatorname{diag}(R_{\mathrm{u1}}, R_{\mathrm{u2}}, ..., R_{\mathrm{uk}-1}, R_{\mathrm{uk}} + R_{\mathrm{u}}, 0, ..., 0, R_{\mathrm{B}}/2m, R_{\mathrm{B}}/m, ..., R_{\mathrm{B}}/m, R_{\mathrm{B}}/2m, 0, ..., 0, R_{\mathrm{uk}+1} + R_{\mathrm{u1}}).$$

Блок A_{21} имеет размерность 4×*s* и следующее содержание:

	$-R_{\rm m1}$		$-R_{\rm mk}-R_{\rm m}$	0	 0	0	 0	0	0	 $R_{\rm us} + R_{\rm u}$
	0		0	0	 0	0	 0	0	0	 0
$A_{21} =$	0		0	0	 $\frac{-R_{\rm B}}{2m}$	$\frac{-R_{\rm B}}{m}$	 $\frac{-R_{\rm B}}{m}$	$\frac{-R_{\rm B}}{2m}$	0	 0
[0	•••	0	0	 0	0	 0	0	0	 0

В первой строке этого блока ненулевыми являются первые k элементов и последний. В третьей строке ненулевые элементы начинаются с (k + l)-го, равного $-R_{\rm B}/2m$, за ним размещены m - 1 одинаковых элементов, равных $-R_{\rm B}/m$, и последний ненулевой элемент, равный $-R_{\rm B}/2m$. Остальные элементы нулевые.

Блок A_{12} является транспонированным к A_{21} . И, наконец, блок A_{22} имеет содержание

A ₂₂ =	, <i>D</i> ₁	$-R_{\delta} - R_{n2} + R_{n3}$		R _δ	
	$-R_{\delta}$	<i>D</i> ₂		$-R_{n1}$	
	$-R_{n2}+R_{n3}$		D_3		. (4
	$-R_{\delta}$	$-R_{n1}$		D_4	

Диагональные элементы матрицы A₂₂ определяются по формулам:

$$D_{1} = 2(R_{\delta} + R_{\mu}) + R_{n2} + R_{n3} + R_{n1} + \sum_{i=1}^{k} R_{\mu i} + R_{\mu s};$$

$$D_{2} = R_{n1} + R_{n2} + R_{\delta}; \quad D_{3} = R_{n2} + R_{n3} + R_{B}; \quad D_{4} = R_{n1} + R_{n3} + R_{\delta}.$$

Элементами матрицы Якоби являются постоянные магнитные сопротивления элементов магнитопровода $R_{\delta j}$ $j = (\overline{1,s})$; R_{ui} , R_{B} , R_{0} и дифференциальные $-R_{zj}$ $j = (\overline{1,s})$; R_{aj} $j = (\overline{1,s})$; R_{uij} $j = (\overline{1,k})$; R_{uis} , R_{nj} (j = 1, 2, 3), R_{sj} (j = 1, 2, 3). Последние определяются путем численного дифференцирования характеристик намагничивания соответствующих участков магнитопровода:

$$F_{z} = F_{z}[\Phi_{\delta}]; \quad F_{a} = F_{a}[\Phi_{a}]; \quad F_{u} = F_{u}[\Phi_{u}];$$
$$F_{us} = F_{us}[\Phi_{us}]; \quad F_{n} = F_{n}[\Phi_{n}]; \quad F_{s} = F_{s}[\Phi_{s}].$$

Для обеспечения сходимости итерационного процесса целесообразно комбинировать итерационный метод Ньютона с методом продолжения решения по параметру. Применительно к данной задаче суть последнего состоит в постепенном наращивании намагничивающих сил контуров от нуля до заданных значений.

Решив систему (2), находим контурные магнитные потоки, через которые определяем реальные потоки в ветвях. Потокосцепления контуров d и q определяются по формулам:

$$\Psi_d = \frac{4}{\pi} w \sum_{i=1}^s \Phi_{\delta i} \cos \gamma_i; \quad \Psi_q = \frac{4}{\pi} w \sum_{i=1}^s \Phi_{\delta i} \sin \gamma_i,$$

а потокосцепления обмотки возбуждения и короткозамкнутого витка равны:

$$\Psi_n = 2w_f \Phi_{n1}; \quad \Psi_e = 2\Phi_{n2}.$$

Описанный выше алгоритм расчета магнитной цепи ОАДРП дает возможность определять дифференциальные индуктивности контуров и на их основе решать задачи расчета установившихся режимов и переходных процессов двигателя.

В качестве примера на рис. 3 представлены годографы вектора результирующего магнитного потока двигателя при скольжениях 1,0 и 0,2. Как видно из рисунка, при скольжении 1,0 магнитное поле машины существенно отличается от эллиптического, в то же время по мере разгона двигателя оно приближается к эллиптическому. На рис. 4 показана кривая изменения электромагнитного момента на периоде при скольжении s = 1.0.

момента на периоде при скольжении s = 1

ЛИТЕРАТУРА

1. Ю феров Ф. М. Электрические машины автоматических устройств: Учеб. для вузов. – М.: Высш. шк., 1988. – 479 с.

2. Владимиров Э.В., Ефименко Е.И. Расчет магнитного поля в явнополюсных микродвигателях с шунтами переменного сечения // Электрические машины и аппараты / Чувашский гос. ун-т. - 1978. - Вып. 6. - С. 40-47.

3. Валентайте Д. З.-И., Каасик П. Ю., Станикунас Д. К. Уточненная математическая модель асинхронного двигателя с экранированными полюсами. - Вильнюс, 1981. – 25 с. – Деп. в ЛитНИИНТИ 30.06.81, № 735-81.

4. Тазов Г. В., Хрущев В. В. Математическая модель асимметричной асинхронной машины // Электричество. - 1989. - № 1. - С. 41-49.

5. Glinka T., Szymansky Z. Analiza obwodu magnetycznego jednofazowego silnika indukcyjnego z trzema zwojami zwortymi na biegunie // Electryfikacia i Mechanizacia Gonictwa i Hutnctwa. Z. 141. - Krakow, 1981. - S. 47-63.

Представлена кафедрой теоретической и общей электротехники

Поступила 4.11.2002