ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ ДЛЯ РАЗЛИЧНЫХ ВИДОВ ДИНАМИКИ ПРОВОДОВ ЭЛЕКТРОУСТАНОВОК ЭНЕРГОСИСТЕМ

Докт. техн. наук СЕРГЕЙ И. И., инж. КЛИМКОВИЧ П. И.

Белорусский национальный технический университет

В процессе эксплуатации воздушных ЛЭП и ОРУ возникают динамические режимы, вызываемые ветром, гололедом и электродинамическими усилиями (ЭДУ) при коротких замыканиях (КЗ). Они сопровождаются недопустимым сближением и даже схлестыванием проводов и тросов, нарушением механической прочности опор, а также усталостными повреждениями проводов и распорок. По указанной причине требуются устройства подавления и ограничения колебаний проводов. Проблема динамики проводов становится более актуальной в связи с совершенствованием конструкций электроустановок за счет сокращения габаритов ОРУ и воздушных ЛЭП. Поэтому при проектировании и эксплуатации современных электроустановок с гибкими проводами вопросы динамики проводов становятся в ряд приоритетных. Под эгидой СИГРЭ выполняется несколько международных программ по исследованию динамики проводов. Речь, в первую очередь, идет о пляске и колебаниях проводов на участках между распорками (субколебаниях), а также об электродинамической стойкости токоведущих конструкций с гибкими проводами.

Усилиями экспертов из разных стран в 1996 г. был подготовлен заключительный доклад по проблеме электродинамического действия больших токов КЗ. На его основе рабочими группами комитета 23 «Подстанции» СИГРЭ совместно с техническим комитетом 73 «Токи КЗ» МЭК подготовлен проект международного стандарта. В разные годы введены в действие национальные стандарты на методы расчета электродинамического действия токов КЗ. В частности, в России такой ГОСТ введен в 1994 г. В 1999 г. он введен и в Беларуси в качестве межгосударственного стандарта СНГ.

Пляска и колебания проводов расщепленной фазы (РФ) на участках между распорками (субколебания) являются серьезной проблемой для механической части воздушных ЛЭП. Обширную программу исследований указанных колебаний проводов осуществляют влиятельные международные энергетические организации: СИГРЭ, МЭК, энергокомпании США, Канады, Европейского Союза, Японии и России.

Для ограничения и гашения субколебаний проводов РФ разработаны демпфирующие распорки и схемы их оптимальной установки в пролетах различной длины. Непрерывно совершенствуются конструкции указанных распорок и модифицируются методы расчета оптимальных схем их расстановки на ЛЭП. По данным СИГРЭ, до сих пор отсутствует общепризнанный надежный метод предотвращения и гашения пляски проводов. По этой причине повсеместно увеличивают расстояния между проводами, проводами и тросами для предотвращения их опасного сближения и схлестывания при пляске. В настоящее время под эгидой ИНТАС (Европейский Союз) осуществляется международный исследовательский проект по ограничению пляски проводов воздушных ЛЭП с помощью комбинированных гасителей колебаний.

На кафедре «Электрические станции» БНТУ развивается научное направление, посвященное исследованию различных видов динамики проводов с помощью математического моделирования и вычислительного эксперимента. В основу математических моделей различных видов динамики проводов положена абсолютно гибкая, растяжимая по закону Гука нить. Для определения мгновенного пространственного положения движущегося провода, представленного тяжелой нитью, принимается векторнопараметрическая форма записи уравнений [1]

$$\frac{\partial^2 \overline{R}}{\partial t^2} = \frac{1}{\rho_0} \frac{\partial}{\partial s_0} \left(\frac{T}{1+e} \frac{\partial \overline{R}}{\partial s_0} \right) + \overline{P}^*, \tag{1}$$

где \overline{P}^* – вектор распределенной нагрузки на единицу массы провода, Н/кг; R[x, y, z] – радиус-вектор мгновенного положения элемента провода, м; T – модуль тяжения, Н; ρ_0 – масса единицы длины провода до растяжения, кг; e – относительная деформация элемента длины провода.

Расчет динамики провода по (1) сводится к решению смешанной краевой задачи с начальными и краевыми условиями [1]. Решение нелинейных дифференциальных уравнений в частных производных гиперболического типа (1) производится разностным методом по явной и неявной схемам с использованием чисел удвоенной длины. Для проводов, имеющих незначительную разницу тяжений в различных точках пролета, уравнения динамики принимают более простой вид [1]

$$\frac{\partial^2 \overline{R}}{\partial t^2} = \frac{T}{\rho_0 (1+e)} \frac{\partial^2 \overline{R}}{\partial s_0^2} + \overrightarrow{P}.$$
 (2)

Уравнения (2) являются уравнениями гибкой нити с малой стрелой провеса ($f_0 \le 5$ %). На рис. 1 приводятся погрешности расчетов сближения фаз $y_{2\max}$ для пролетов различной длины при $f_0 = \text{var}$. Для расчета динамики большинства токоведущих конструкций с гибкими проводами, имеющих $f_0 < 5$ %, возможно использование (2). Исключение составляют задачи расчета электродинамической стойкости гибкой ошиновки распределительных устройств (РУ) с учетом конструктивных элементов.

Рис. 1. Расхождение между величинами у_{2тах}, найденными по (1) и (2), при различных стрелах провеса: - - - - *l* = 5 м; ---- - 40; - - - - - - 400 м

Динамика проводов при КЗ. Для определения ЭДУ используется прямой метод расчета Био-Савара-Лапласа, не требующий непосредственного решения дифференциальных уравнений электромагнитного поля [1]. При математической формулировке задачи динамики проводов с учетом конструктивных элементов РУ используется принцип связей механики. Действие проводов на опоры, распорки и другие элементы заменяется реакциями связей. Например, уравнением динамической совместности проводов сборных шин и отпаек является уравнение движения ответвительного зажима. Математическая модель гибкой ошиновки ЗРУ 110 и 220 кВ учитывает динамику поддерживающих V-образных гирлянд, отпаек к электрическим аппаратам, статические и динамические составляющие сил со стороны смежных участков, которые сводят расчет многопролетных гибких шин ЗРУ к одному пролету [2]. Аналогично для РФ действие проводов на распорки заменяется реакциями связей и рассматривается динамика распорки жесткой конструкции как суперпозиция поступательного перемещения центра масс и вращения вокруг него. При этом используются подвижная система координат, неизменно связанная с ее телом, и динамические уравнения Эйлера [3]. Схлестнувшиеся участки проводов фазы удерживаются внутрифазными ЭДУ и образуют единую механическую систему, динамика которой определяется суммарным воздействием всех сил, приложенных к отдельным проводам. Их движение описывается на основе модели эквивалентного провода [1].

При решении смешанной краевой задачи динамики РФ при КЗ на различных стадиях ее движения приходится определять начальные и краевые условия для отдельных схлестнувшихся и несхлестнувшихся участков фазы. В результате вычислительного эксперимента по компьютерной программе (КП) на основе опытных данных LABORELEC [4] (Бельгия), Electricite de France [5] и Канады [6] выполнена оценка достоверности составлеңного алгоритма расчета [1].

С использованием разработанных численных методов расчета поставлен вычислительный эксперимент на совместное действие климатических и электродинамических нагрузок и получены их расчетные сочетания (рис. 2) для ОРУ [7].

Рис. 2. Зависимости параметров электродинамической стойкости гибких шин ОРУ 500 кВ от тока двухфазного КЗ: провод $3 \times AC-500/64$; l = 67 м; жесткие порталы; $t_k = 0,28$ с; номера кривых соответствуют номерам климатических режимов согласно Правилам устройства электроустановок

Субколебания проводов расщепленной фазы. Причиной субколебаний являются аэродинамические взаимодействия проводов РФ с воздушным потоком, обусловленные аэродинамическим следом. Аэродинамические силы являются распределенными по длине провода нагрузками, поэтому субколебания проводов описываются уравнениями (2). Входящие в (2) силы \overline{P} определяются отдельно для каждой пары наветренных и подветренных проводов [8]:

$$F_{\mu,y} = 0.5 \rho_a D C_{x0} V_{\mu} V_{\mu,y};$$

$$F_{\mu,z} = 0.5 \rho_a D C_{x0} V_{\mu} V_{\mu,z};$$

$$F_{n,y} = 0.5 \rho_a D V_n (V_{n,y} C_x + V_{n,z} C_y);$$

$$F_{n,z} = 0.5 \rho_a D V_n (V_{n,z} C_y + V_{n,y} C_z).$$
(3)

где $V_{\rm H}$, $V_{\rm n}$, $V_{\rm H.y}$, $V_{\rm H.z}$, $V_{\rm n.y}$, $V_{\rm n.z}$ – скорости движения наветренного и подветренного проводов и их проекции на оси координаты; $C_{\rm x0}$ – коэффициент лобового сопротивления для наветренного провода.

Входящие в (3) аэродинамические коэффициенты лобового сопротивления и подъемной силы C_x и C_y для подветренного провода зависят от взаимного мгновенного положения пары проводов. Их значения определяются по опытным данным с помощью интерполяционных формул [9]. Математическая модель субколебаний проводов фазы включает уравнения (2), а также уравнения динамики распорок различного типа. При их совместном решении краевые условия для участков проводов определяются из уравнений динамики распорок [8]. Расчет динамики демпфирующих распорок производится с учетом упруговязких характеристик демпферного узла [8].

Начальные условия определяются из равновесного положения проводов фазы и распорок при заданной скорости ветра с учетом характеристик азродинамического следа для подветренных проводов. Поэтому расчетная модель статики представляет собой пучок гибких нитей и распорок. Математическое описание их равновесия составляется с использованием уравнений динамики, в которых производные по времени принимаются равными нулю. Решение краевой задачи статики РФ выполняется разностным методом с последующими итерациями по координатам оси фазы, углов поворота лучей и рамы демпфирующей распорки. Искусственное возбуждение колебаний осуществляется приложением к паре проводов импульсных распределенных сил противоположного знака. Вычислительный эксперимент проводится с помощью пакета КП SUBOS. Выполнены расчеты субколебаний четырехпроводной фазы, для которой в эксплуатации были зафиксированы субколебания с двойной амплитудой 30 см при скорости ветра 5...6 м/с (табл. 1). Как видно, субколебания с такой амплитудой имеют место в подпролете 75 м.

В ЗАО ЭССП (г. Москва) по КП SUBOS были проведены многочисленные вариантные расчеты для схем неравномерной расстановки распорок в пролетах от 60 до 1500 м по критерию минимума амплитуд субколебаний. Как видно из примера (рис. 3), оптимальная схема расположения распорок в пролете позволяет ограничить амплитуды субколебаний почти в три раза.

Длина <i>l</i> _s , м	Угловая вязкостная жесткость луча рас- порки, даН·м·с/рад	<i>f</i> ₀⁺, Гц	<i>f</i> кп, Гц	А _{т-т} , см	<i>F</i> **, даН	β***, мин
45	0,2	1,386	1,33	Затухание колебаний		
70	0,2	0,891	0,888	20,0	24,3	17
75	0,2	0,832	0,820	30,1	22,8	18
	1,0		0,800	Затухание колебаний		
65	0,2	0,960	1,0	16,5	13,2	12
	0,75		0,909	Затухание колебаний		
60	0,2	1,04	1,0	8,7	8,0	8
48	0,2	1,3	1,27	Затухание колебаний		

Расчет субколебаний четырехпроводной фазы (4×ACSR-480; v = 6 м/с; l = 363 м; $T_0 = 100$ кН; $a_p = 0,4$ м)

Примечания: $f_0^* = \frac{1}{2l_s} \sqrt{\frac{T_0}{\rho}}$; F^{**} – изгибающая сила, действующая на луч распорки;

β*** – угол изгиба провода вблизи распорки; *a*_p – шаг расщепления фазы.

Рис. 3. Зависимости амплитуд субколебаний средних точек проводов от порядкового номера подпролета (*n*) в схеме с неравномерной расстановкой распорок: 6xACSR-500: v = 15 м/с: а – начальный пролет l = 470 м (40–50–60–55–60–55–60–50–40 м); б – оптимизированный l = 472 м (44–55–57–50–58–50–57–55–46 м)

Пляска проводов воздушных ЛЭП. Асимметричный гололедный осадок играет основную роль в изменении подъемных сил и моментов, действующих на колеблющиеся провода. Для исследования характеристик пляски использованы уравнения динамики проводов в виде [10]:

$$\frac{\partial^2 y_c}{\partial t^2} + \frac{\delta}{\rho} \frac{\partial y_c}{\partial t} - h \sin \theta_G \frac{\partial^2 \theta}{\partial t^2} - h \cos \theta_G \left(\frac{\partial \theta}{\partial t}\right)^2 = \frac{1}{\rho} \left(T \frac{\partial^2 y_c}{\partial s^2} + P_y\right);$$
$$\frac{\partial^2 z_c}{\partial t^2} + \frac{\delta}{\rho} \frac{\partial z_c}{\partial t} + h \cos \theta_G \frac{\partial^2 \theta}{\partial t^2} - h \sin \theta_G \left(\frac{\partial \theta}{\partial t}\right)^2 = \frac{1}{\rho} \left(T \frac{\partial^2 z_c}{\partial s^2} + P_z\right);$$
(4)

$$\left(I_{c}+\rho h^{2}\right)\frac{\partial^{2}\theta}{\partial t^{2}}+\rho h\left[\cos\theta_{G}\frac{\partial^{2}z_{c}}{\partial t^{2}}-\sin\theta_{G}\frac{\partial^{2}y_{c}}{\partial t^{2}}\right]+f_{c}\frac{\partial\theta}{\partial t}=GJ\frac{\partial^{2}\theta}{\partial s^{2}}+M_{a}$$

где y_c , z_c – проекции радиус-вектора положения оси жесткости провода; θ – угол кручения провода; δ – коэффициент демпфирования колебаний; $h[h_y, h_z]$ – эксцентриситет провода; $\theta_G = \theta_0 + \theta$ (θ_0 – начальный угол оледенения провода); I_c – момент инерции кручения провода, покрытого гололедом; f_c – коэффициент трения кручения провода; GJ – его крутильная жесткость; M_a – аэродинамический момент на единицу длины провода.

При построении модели используются аэродинамические характеристики: $C_M = f(\theta_a)$; $C_D = f(\theta_a)$ и $C_L = f(\theta_a)$, полученные опытным путем [11, 12].

При наличии гасителей колебаний провод разделяется на участки. Краевые условия для них определяются из решения уравнений динамики гасителя, которые составлены на основе принципов связи и суперпозиции [13]. Используется принцип моделирования РФ на основе эквивалентного провода по уравнениям (4), в которых GJ и I представляют собой крутильную жесткость и момент инерции эквивалентного провода.

Вычислительный эксперимент проводится с помощью КП, в которой реализован численный метод расчета пляски проводов воздушных ЛЭП на основе уравнений (4). Для оценки достоверности расчетов по разработанной КП использовались данные японских исследователей [14] и КазНИИЭ.

На опытном полигоне КазНИИЭ пляска была получена в естественных условиях при установке искусственных обтекателей при начальных углах оледенения, равных 93°, 185° и 280°. С помощью КП приведены расчеты и получены автоколебания при близких углах (табл. 2). В качестве примера на рис. 4, 5 приводятся результаты расчета с использованием модели эквивалентного провода, крутильная жесткость которого определяется по формулам, заимствованным в [15].

Таблица 2

Опыт		Расчет		Vanarmanuaruus En auraaa	
θ ₀ , град	<i>А_{т-т},</i> м	θ ₀ , град	<i>А_{т-т},</i> м	ларактеристика процесса	
		Без г	асителей		
190	2,8	175	2,3	Пляска	
280	3,36	290	3,0	Пляска	
95	3,5	93	2,5	Пляска	
	(С комбинирова	анными гасите	лями	
190	0,36	175	0,0	Затухание	
280	0,3	290	0,35	Ограничение	
95	Нет данных	93	0,4	Ограничение	

Сопоставление расчетных и опытных данных пляски проводов опытного пролета КазНИИЭ (2×AC-400/51; *l* = 292 м; *T* = 5700 даН)

Рис. 4. Колебания проводов в вертикальной плоскости (по КП): а – без установки гасителей; б – с установкой комбинированных гасителей

Рис. 5. Траектории движения проводов (по КП)

Расчеты пляски ВЛ 35...220 кВ показали, что двойная амплитуда вертикальных колебаний изменяется в диапазоне 0,5...4,0 м, а относительные изменения максимальных тяжений достигают двукратной величины, что соответствует данным наблюдения.

Численный метод расчета динамических характеристик пляски одиночных и расщепленных проводов воздушных ЛЭП с учетом комбинированных гасителей колебаний может быть использован при разработке оптимальных схем установок гасителей с различными параметрами и техническими требова-

ниями на линейную арматуру, обеспечивающих ее надежную работу в условиях эксплуатации.

вывод

Разработаны и апробированы универсальные математические модели, численные методы и компьютерные программы расчета электродинамической стойкости, пляски и субколебаний гибких проводов электроустановок энергосистем, основанные на расчетной модели провода в виде гибкой упругой нити, пригодные для постановки вычислительного эксперимента по оценке эффективности различных технических устройств ограничения и гашения колебаний.

ЛИТЕРАТУРА

1. Сергей И.И., Стрелюк М.И. Динамика проводов электроустановок энергосистем при коротких замыканиях: Теория и вычислительный эксперимент. – М.: ВУЗ-ЮНИТИ, 1999.

2. Streliuk M. I., Sergey I. I., Bladyko Y. V. Calculation of Multispan Flexible Bus-Bars of Substation under Short Circuit Conditions // Short-Currents in Power Systems: Proc. 8th Int. Symp. / University of Liege. – Brussels (Belgium), 8–10 Oct. 1998. – № 23. – P. 129–134.

3. Бухгольц Н. Н. Основной курс теоретической механики. – М.: Наука, 1972.

4. L i l i e n J. L. Comparison between Experimental and Numerical Results on Flexible Conductors. – Paris, 1980. – 10 p. (Preprint / CIGRE; 23–80 (WG–02) 18–IWD).

5. Dalle B., Roussel P. Mechanical Effects of High Short Circuit Current on Over-Head Lines. // IEE Power Eng. Soc. Text «A» Pap. Winter meeting, New York. – N. Y., 1979.

6. G r a i g D. B., F o r d G. L. The Response of Strain Bus to Short-Circuit Currents // IEEE Trans. Power Appar and Syst. $-1980. - N_{2} 2$.

7. Streliuk M. I., Sergey I. I., Bladyko Y. V. Choice of Climatic Conditions for Verification on Flexible Wires Overlapping at Short-Circuit // Short-Circuit Currents in Power Systems: Proc. 6th Int. Symp. / Institute in Electric Power Engineering and the University of Liege. – Liege (Belgium), 8–10 Oct. 1994. – № 2.17.

8. Streliuk M. I., Sergey I. I., Bladyko Y. V. Calculation of Subspan Oscilations of Overhead Lines Split Phases // Power System Conference: Proc. 9th Int. Conf. / St.-Petersburg State Techn. Univ. – St.-Petersburg, 4–7 July 1994. – Vol. 2. – TL–E–405.

9. A n a l i t i c a l Method for Computing Subspan Oscillation: Analitical and Experimental Results / G. Diana, M. Gasparetto, G. Digiacomo, P. Nicolini. – N. Y., 1974.

10. С ергей И.И. Математическое моделирование динамики гибких проводов расщепленных фаз ОРУ и воздушных ЛЭП // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1997. – № 11–12. – С. 11–19.

11. Lilien J., Erpicum M., Wolfs M. Overhead Line Galloping, Field Experience during One Event in Belgium on Last February 13th, 1997. IWAIS '98. International Conf., Reyk-javik, Iceland, June 1998.

12. Y a m a o k a A. Numerical Calculation Method for Galloping Oscillation of a Bundle Conductor Transmission Line // Trans. IEE Japan. – 1979. – № 9.

13. С е р г е й И. И. Математическое моделирование гасителей колебаний расщепленных проводов воздушных ЛЭП // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 1999. – № 6. – С. 11–24.

14. The Simulation Method of Galloping of Overhead Transmission Line. – Technical Laboratory of the Hokkaido Electric Power Co. Ltd. – Joint Meeting of UNIPEDE, CORECH-Galloping, 1983, Kyoto, Japan.

15. W a n g I., L i l i e n J. Overhead Electrical Transmission Line Galloping: A Full Multi-Span -3-DOF - Model, Some Application and Design Recommendations // IEEE Trans. on Power Delivery. - Vol. 13, N_{2} 3. -1998. - P. 909–916.

Представлена кафедрой электрических станций

Поступила 8.10.2004

5