сов в ТТ и вторичных токов в цепях РЗ с помощью компьютерных программ [3]. Полученные при этом цифровые осциллограммы токов с учетом работы ТТ, схем соединения вторичных обмоток ТТ могут быть использованы в качестве исходной информации в испытательных системах типа «Ретом» для оценки поведения РЗ в различных режимах короткого замыкания.

ЛИТЕРАТУРА

1. И н с т р у к ц и я по проверке трансформаторов тока, используемых в схемах релейной защиты. – 2-е изд. – М.: Энергия, 1977. – 89 с.

2. Методика снятия и расчета вольт-амперных характеристик и характеристик намагничивания трансформаторов тока на основе цифровых технологий / В. Х. Сопьяник, А. И. Власов, Е. А. Глушонок, В. Л. Радюк // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2003. – № 5. – С. 5–10.

3. Сопьяник В. Х. Расчет и анализ переходных и установившихся процессов в трансформаторах тока и токовых цепях устройств релейной защиты. – Мн.: БГУ, 2000. – 143 с.

4. И ванил ов Б. В., Заболотный И. П. Оценка технологии регистрации и обработка информации // Электрические станции. – 2003. – № 9. – С. 40–45.

Поступила 3.03.2004

УДК 621.3.066.6

РАСЧЕТ НАГРЕВА ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ НА ОСНОВЕ ДВУХМЕРНОЙ МОДЕЛИ ТЕМПЕРАТУРНОГО ПОЛЯ

Докт. техн. наук, проф. ГЕРАСИМОВИЧ А. Н., канд. техн. наук ГЕРАСИМОВИЧ Д. А., инж. КЛИМОВИЧ Ю. А.

Белорусский национальный технический университет, Минские кабельные сети РУП «Минскэнерго», Пинские электрические сети РУП «Брестэнерго»

В [1] рассмотрен расчет нагрева плоских контактных соединений на основе одномерной модели температурного поля. Такая модель предполагает неизменность температуры по толщине соединения. В расчетах учитывается только неравномерность тепловыделения по длине. Однако проведенные расчеты показали, что резко неравномерное распределение тепловыделения даже для коротких контактов (длина соизмерима с толщиной) приводит к значительному увеличению температуры на их краях, особенно в переходных режимах при коротких замыканиях. Плоским контактным соединениям присуща неравномерность тепловыделения не только по длине, но и по толщине. Резкая неравномерность распределения джоулевой теплоты в первую очередь характерна для контактов с хромоникелевыми защитными покрытиями [2]. Последние обладают худшими электро- и теплопроводящими свойствами по сравнению со свойствами соединяемых проводников. Полученные для таких контактов расчетные температуры по

одномерной модели лишь приближенно отражают их температурное поле в режимах коротких замыканий. Для контактов на большие токи, обладающих заметной толщиной, температура становится функцией обеих пространственных координат (x и z), и исследование поля температур требуется проводить с учетом неравномерности тепловыделения и по их толщине, что возможно на основе двухмерной модели. Здесь такая модель (рис. 1) рассматривается применительно к многослойному контактному узлу (область 2), соединяющему токоведущие части (области 1, 3).

Рис. 1. а – расчетная сетка сечения контактного соединения (двухмерная модель); б – краевые поверхности контактного узла и границы раздела слоев многослойной структуры

Расчет теплового режима многослойной структуры должен проводиться при совместном решении уравнений электромагнитного поля (расчет удельной мощности тепловыделения) и уравнения теплопроводности, что вызывает значительные трудности. В [1, 2] указана возможность их раздельного решения из-за незначительного влияния температуры на характер распределения по сечению соединения протекающего тока и, как следствие, величины джоулевой теплоты.

Двухмерная модель температурного поля. Температурное поле контактного соединения описывается уравнением теплопроводности твердого тела [3, 4]

$$c_{ij}(\Theta)\rho_{ij}\frac{\partial\Theta}{\partial t} = \operatorname{div}(\lambda_{ij}(\Theta)\operatorname{grad}\Theta) + P_{ij}(\Theta), \qquad (1)$$

17

которое применительно к нашему случаю (неизменность тепловыделения и температуры от переменной *у*) приводится к дифференциальному уравнению второго порядка в частных производных:

$$c_{ij}(\Theta)\rho_{ij}\frac{\partial\Theta(x,z,t)}{\partial t} = \lambda_{ij}(\Theta)\left(\frac{\partial^{2}\Theta(x,z,t)}{\partial x^{2}} + \frac{\partial^{2}\Theta(x,z,t)}{\partial z^{2}}\right) + \frac{\partial\lambda_{ij}(\Theta)}{\partial x}\frac{\partial\Theta(x,z,t)}{\partial x} + \frac{\partial\lambda_{ij}(\Theta)}{\partial z}\frac{\partial\Theta(x,z,t)}{\partial z} + P_{ij}(x,z,t,\Theta),$$
(2)

где Θ – температура в сечениях контактного соединения и прилегающих к нему проводников; $c_{ij}(\Theta)$, ρ_{ij} , $\lambda_{ij}(\Theta)$ – удельные теплоемкость, плотность и коэффициент теплопроводности *i*-го слоя *j*-й области многослойной структуры, которые в общем случае являются функциями температуры; $P_{ij}(x, z, t, \Theta)$ – джоулевы потери в сечении контакта.

В (2) учтены зависимости теплофизических свойств слоев контакта от их температуры из-за высоких градиентов температуры в сечении. Вследствие кратковременности режима короткого замыкания теплоотдача в окружающее пространство не учитывается. Зависимости удельных теплоемкости $c_{ij}(\Theta)$ и теплопроводности $\lambda_{ij}(\Theta)$ считаются известными и заданными аналитически или таблично.

Расчет тепловыделения в плоском контакте основывается на методе расчета переходных электромагнитных процессов в многослойных структурах контактных соединений. Величина $P_{ij}(x, z, t, \Theta)$ в каждой точке контактного узла и прилегающих проводников определяется на основе расчета характеристик электромагнитного поля двухмерной модели и в данном случае будет [5...7]:

$$P_{ij}(x, z, t, \Theta) = \frac{\sigma_{xij}^2(x, z, t)}{\gamma_{xij}(\Theta)} + \frac{\sigma_{zij}^2(x, z, t)}{\gamma_{zij}(\Theta)},$$
(3)

где $\sigma_{xij}(x, z, t)$, $\sigma_{zij}(x, z, t)$ – известные мгновенные значения плотности тока в *i*-м слое *j*-й области многослойной структуры контактного узла; $\gamma_{xij}(\Theta)$, $\gamma_{zij}(\Theta)$ – электрические проводимости *i*-го слоя *j*-й области в направлении координат *x* и *z* соответственно.

Уравнение (2) дополняется начальными и краевыми условиями. Начальные значения температуры для областей 1...3 принимаются равными величинам, найденным из решения на основе одномерной модели для установившегося режима, т. е.:

$$\Theta(x, z, 0) = \Theta_0(x); \quad x \in (-\infty, +\infty); \quad z \in (0, \delta).$$
(4)

Их также можно принять равными постоянной величине Θ_0 .

Граничные условия на бесконечности для областей 1, 3 рассчитываются только для слоев с проводимостями, отличными от нуля ($\gamma_{xij} \neq 0$) при равномерном распределении тепловыделения по толщине:

$$\Theta(-\infty, z, t) = \Theta_0(-\infty, 0) + \int_0^t \frac{P_{i1}(-\infty, z, t, \Theta)}{c_{i1}(\Theta)\rho_{i1}} dt, \\ \Theta(+\infty, z, t) = \Theta_0(+\infty, 0) + \int_0^t \frac{P_{i3}(+\infty, z, t, \Theta)}{c_{i3}(\Theta)\rho_{i3}} dt.$$
(5)

Граничные условия на горизонтальных поверхностях узла ($z = 0, \delta$), а также на поверхностях, прилегающих к нему токоведущих частей (рис. 1б), определяются равенством нулю теплоотдачи с указанных поверхностей, т. е.:

$$\lambda_{ij}(\Theta) \frac{\partial \Theta(x, z, t)}{\partial z} \bigg|_{z=z_{\mu}} = 0, \qquad (6)$$

где z_p принимает значения, которые соответствуют поверхностям слоев,

соприкасающихся с воздухом ($\sum_{i=0}^{p} \delta_i$, p = 0, ..., n), а координата x изменяется в пределах рассматриваемых областей (j = 1, $x \in [-l_1, 0]$; j = 2, $x \in [0, l]$; j = 3, $x \in [l, l_3]$).

На вертикальных поверхностях контакта (x = 0, l) граничные условия будут следующие:

$$\left. \lambda_{ij}(\Theta) \frac{\partial \Theta(x, z, t)}{\partial x} \right|_{x=0, l} = 0, \qquad (7)$$

где координата z принимает значения в пределах толщин слоев контактного соединения, несоприкасающихся с проводниками (например, $z \in [\delta_1, \delta]$ или $z \in [0, \delta - \delta_n]$ для рис. 1б).

Так как контакт представляется многослойной структурой, математическая модель температурного поля также дополняется условиями на границах раздела слоев (равенство температур и нормальных составляющих тепловых потоков на границах *i*-го и i + 1-го слоев):

$$\Theta(x, z, t)\Big|_{z=\sum_{p=1}^{i}\delta_{p_{-}}} = \Theta(x, z, t)\Big|_{z=\sum_{p=1}^{i}\delta_{p_{+}}};$$

$$\lambda_{ij}(\Theta)\frac{\partial\Theta(x, z, t)}{\partial z}\Big|_{z=\sum_{p=1}^{i}\delta_{p_{-}}} = \lambda_{i+1, j}(\Theta)\frac{\partial\Theta(x, z, t)}{\partial z}\Big|_{z=\sum_{p=1}^{i}\delta_{p_{+}}},$$
(8)

где $j = 2; i = 1, ..., n - 1; x \in [0, l].$

Решение (2) для многослойной области с учетом соответствующих начальных и краевых условий в настоящее время возможно численным способом на основе алгебраизации, т. е. замены производных конечноразностными соотношениями. Для этого рассматриваемая область заменяется расчетной сеткой с соответствующими узлами (рис. 1а) и принятыми шагами Δx , Δz и Δt . При принятой схеме аппроксимации производных:

$$\frac{\partial \Theta(x_{k}, z_{q}, t)}{\partial t} \bigg|_{t=t_{m}} \approx \frac{\Theta_{kq}^{m} - \Theta_{kq}^{m-1}}{\Delta t};$$

$$\frac{\partial^{2} \Theta(x, z_{q}, t_{m})}{\partial x^{2}} \bigg|_{x=x_{k}} \approx \frac{\Theta_{k+1q}^{m} - 2\Theta_{kq}^{m} + \Theta_{k-1q}^{m}}{\Delta x^{2}}; \quad \frac{\partial \Theta(x, z_{q}, t_{m})}{\partial x} \bigg|_{x=x_{k}} \approx \frac{\Theta_{k+1q}^{m} - \Theta_{k-1q}^{m}}{2\Delta x};$$
(9)
$$\frac{\partial^{2} \Theta(x_{k}, z, t_{m})}{\partial z^{2}} \bigg|_{z=z_{q}} \approx \frac{\Theta_{kq+1}^{m} - 2\Theta_{kq}^{m} + \Theta_{kq-1}^{m}}{\Delta z^{2}}; \quad \frac{\partial \Theta(x_{k}, z, t_{m})}{\partial z} \bigg|_{z=z_{q}} \approx \frac{\Theta_{kq+1}^{m} - \Theta_{kq-1}^{m}}{2\Delta z};$$

$$\frac{\partial \lambda_{ij}(\Theta)}{\partial x} \bigg|_{x=x_{k}} \approx \frac{\lambda_{k+1q}(\Theta) - \lambda_{k-1q}(\Theta)}{2\Delta x}; \quad \frac{\partial \lambda_{ij}(\Theta)}{\partial z} \bigg|_{z=z_{q}} \approx \frac{\lambda_{kq+1}(\Theta) - \lambda_{kq-1}(\Theta)}{2\Delta z};$$

уравнение теплопроводности для внутренних узлов рассматриваемых областей принимает вид

$$a_1 \Theta_{k-1q}^m + a_2 \Theta_{kq}^m + a_3 \Theta_{k+1q}^m + a_4 \Theta_{kq-1}^m + a_5 \Theta_{kq+1}^m = b_1 \Theta_{kq}^{m-1} + b_2 P_{kq}^m(\Theta) .$$
(10)

В (10) значения коэффициентов *а* и *b* рассчитываются по формулам:

$$a_{1} = -1 + \frac{1}{4} \frac{\lambda_{k+1q}(\Theta) - \lambda_{k-1q}(\Theta)}{\lambda_{kq}(\Theta)} \quad (a); \quad a_{2} = 2 + 2 \frac{\Delta x^{2}}{\Delta z^{2}} + \frac{c_{kq}(\Theta)\rho_{kq}}{\lambda_{kq}(\Theta)} \frac{\Delta x^{2}}{\Delta t} \quad (6);$$

$$a_{3} = -1 - \frac{1}{4} \frac{\lambda_{k+1q}(\Theta) - \lambda_{k-1q}(\Theta)}{\lambda_{kq}(\Theta)} \quad (B); \quad a_{4} = -\frac{\Delta x^{2}}{\Delta z^{2}} \left(1 - \frac{1}{4} \frac{\lambda_{kq+1}(\Theta) - \lambda_{kq-1}(\Theta)}{\lambda_{kq}(\Theta)} \right) (\Gamma); \quad (11)$$

$$a_{5} = \frac{\Delta x^{2}}{\Delta x^{2}} \left(1 + \frac{1}{4} \frac{\lambda_{kq+1}(\Theta) - \lambda_{kq+1}(\Theta)}{\lambda_{kq}(\Theta)} \right) (\mathbf{a}); \ b_{1} = \frac{c_{kq}(\Theta)\rho_{kq}}{\lambda_{kq}(\Theta)} \frac{\Delta x^{2}}{\Delta t} (\mathbf{e}); \ b_{2} = \frac{\Delta x^{2}}{\lambda_{kq}(\Theta)} (\mathbf{w}).$$

При составлении соотношений (11) индексы слоев *i* и областей *j* для свойств материалов контакта замейены соответствующими индексами узлов сетки (например, $c_{ij}(\Theta)$ соответствует $c_{kq}(\Theta)$ и т. п.). Для слоев, толщина которых меньше шага разбиения по координате z ($\delta_i \leq \Delta z$), принимается величина $\Delta z = \delta_i$, а количество разбиений слоя $Q_i = 1$. Для области 1 (j = 1) индекс k в (10) принимает значения 2, ..., $S_1 + 1$. При $j = 2 - k = S_1 + 2, ..., S_1 + S$, а при $j = 3 - k = S_1 + S + 1, ..., S_1 + S + S_3$. Здесь S_1 , S и S_3 – количество шагов разбиения длин соответствующих областей по координате x. Индекс q в пределах каждого слоя принимает значения $q = \sum_{p=1}^{i-1} Q_p + 2, ..., \sum_{p=1}^{i} Q_p$, которые соответствуют его внутренним узлам (ис-

ключены узлы на границах раздела слоев). При этом в (10) величина q для областей 1 и 3 присуща только токопроводящим слоям ($\gamma_{xij} \neq 0$).

Для узлов, которые соответствуют граничным поверхностям на бесконечности (k = 1 и $k = S_1 + S + S_3 + 1$), разностный аналог (5) будет следующим:

$$\Theta_{kq}^{m} = \Theta_{kq}^{m-1} + \frac{P_{kq}^{m}(\Theta)}{c_{kq}(\Theta)\rho_{kq}(\Theta)}\Delta t .$$
(12)

Аппроксимация уравнения теплопроводности на внешних узлах осуществляется заменой производных правой и левой разностями. Для узлов вертикальных боковых поверхностей контакта (рис. 16), т. е. на стыках области 2 с непроводящими слоями областей 1 и 3, аппроксимация осуществляется с учетом (7). Этому условию соответствуют равенства: $\Theta_{k-1q}^m = \Theta_{kq}^m$ при x = 0 и $\Theta_{kq}^m = \Theta_{k+1q}^m$ при x = l. Их подстановка в (2) с учетом (9) приводит к алгебраическим уравнениям вида (10). В приложении (П. 1) приведены численные значения и расчетные формулы вычисления коэффициентов $a'_1 - a'_5$ получаемых уравнений для указанных узлов по величинам $a_1 - a_5$.

Уравнение (2) для внешних узлов верхних и нижних горизонтальных боковых поверхностей (рис. 1б) аппроксимируется с учетом граничного условия (6), т. е. $\Theta_{kq-1}^{m} = \Theta_{kq}^{m}$ (нижние поверхности) и $\Theta_{kq}^{m} = \Theta_{kq+1}^{m}$ (верхние поверхности). При этом следует различать узлы, расположенные в углах стыка областей (рис. 1б), и узлы, расположенные в остальной части горизонтальной поверхности. Информация о величинах коэффициентов для уравнений рассматриваемых узлов приведена в приложении (П. 2).

Выражения для расчета коэффициентов b_1 , b_2 в уравнениях указанных узлов остаются без изменений.

Приведенные расчетные формулы и значения коэффициентов используются для алгебраизации уравнения теплопроводности во внутренних и внешних узлах сетки. Исключение составляют узлы, расположенные на границах раздела слоев самого контакта, т. е. узлы с $k = S_1 + 1, ..., S_1 + S + 1$

и
$$q = \sum_{p=1}^{i} Q_p + 1$$
, $i = 1, ..., n - 1$ (поверхности 7...11 на рис. 16). При состав-

лении уравнений для узлов границ раздела свойствам слоев, помимо индексов узлов, присваивается индекс номера слоя, т. е. $c_{ikq}(\Theta)$, $\lambda_{ikq}(\Theta)$,

 ρ_{ikq} . Тогда узлам границы раздела для слоя i-1 будет соответствовать уравнение

$$a_{(i-1)1}\Theta_{k-1q}^{m} + a_{(i-1)2}\Theta_{kq}^{m} + a_{(i-1)3}\Theta_{k+1q}^{m} + a_{(i-1)4}\Theta_{kq-1}^{m} + a_{(i-1)5}\Theta_{kq+1}^{m} = b_{(i-1)1}\Theta_{kq}^{m-1} + b_{(i-1)2}P_{kq}^{m}(\Theta)_{-}.$$
 (13)

Аналогичное уравнение для узлов і-го слоя

$$a_{i1}\Theta_{k-1q}^{m} + a_{i2}\Theta_{kq}^{m} + a_{i3}\Theta_{k+1q}^{m} + a_{i4}\Theta_{kq-1}^{m} + a_{i5}\Theta_{kq+1}^{m} = b_{i1}\Theta_{kq}^{m-1} + b_{i2}P_{kq}^{m}(\Theta)_{+}.$$
 (14)

В (13) величина $P_{kq}^{m}(\Theta)_{-}$ соответствует верхней границе слоя i - 1, а в (14) $P_{kq}^{m}(\Theta)_{+}$ – нижней границе слоя *i*. Разрыв функции тепловыделения на границе раздела слоев обусловлен различиями электрических проводимостей и плотностей протекающих токов слоев.

Используя аппроксимацию условий (8) на границах раздела слоев

$$\frac{\lambda_{(i-1)kq}(\Theta)}{\Delta z_{i-1}} \left(\Theta_{kq+1}^{\prime m} - \Theta_{kq}^{m} \right) = \frac{\lambda_{ikq}(\Theta)}{\Delta z_{i}} \left(\Theta_{kq}^{m} - \Theta_{kq-1}^{\prime m} \right)$$
(15)

и выражения (13), (14), окончательно получим уравнение для узлов на границах раздела слоев, аналогичное (10):

$$a_{1}^{\prime}\Theta_{k-1q}^{m} + a_{2}^{\prime}\Theta_{kq}^{m} + a_{3}^{\prime}\Theta_{k+1q}^{m} + a_{4}^{\prime}\Theta_{kq-1}^{m} + a_{5}^{\prime}\Theta_{kq+1}^{m} = b_{1}^{\prime}\Theta_{kq}^{m-1} + b_{2}^{\prime}\left(P_{kq}^{m}(\Theta)\right), \quad (16)$$

где $\Theta_{kq+1}^{\prime m}$, $\Theta_{kq-1}^{\prime m}$ в (15) — вспомогательные температуры в узлах, прилегающих к границам раздела.

Значения коэффициентов уравнения (16) находятся по приведенным ниже формулам:

$$d'_{1} = a_{i1} + a_{(i-1)i}d_{(i-1),i}(\Theta) \quad (a); \quad d'_{2} = a_{i2} + a_{i4} + (a_{(i-1)2} + a_{(i-1)5})d_{(i-1),i}(\Theta) \quad (6);$$

$$d_{3} = a_{i3} + a_{(i-1)3}d_{(i-1),i}(\Theta) \quad (B); \quad d_{4} = a_{(i-1)4}d_{(i-1),i}(\Theta) \quad (\Gamma); \quad a_{5}' = a_{i5} \quad (\Pi); \quad (17)$$

$$b_{1}' = b_{i1} + b_{(i-1),i}(\Theta) \quad (e); \quad b_{2}' \left(P_{kq}^{m}(\Theta) \right) = b_{i2} P_{kq}^{m}(\Theta)_{+} + b_{(i-1),2} d_{(i-1),i}(\Theta) P_{kq}^{m}(\Theta)_{-} \quad (\mathcal{H}),$$

где $d_{(i-1),i}(\Theta) = \frac{a_{i4}\Delta z_i \lambda_{(i-1)kq}(\Theta)}{a_{(i-1)5}\Delta z_{(i-1)} \lambda_{ikq}(\Theta)}$.

Коэффициенты *a* и *b* в (17) с индексами i - 1 и *i* рассчитываются по (11) с учетом индивидуальных свойств слоев и их толщины, т. е. если $\delta_i \leq \Delta z$, то $\Delta z_i = \delta_i$.

Для уравнений узлов границ раздела на краях контакта (при x = 0 и x = l) значения и расчетные формулы вычисления коэффициентов $a_1'' - a_5''$ приведены в приложении (П. 3).

Полученные для узлов расчетной сетки уравнения образуют систему линейных алгебраических уравнений (ЛАУ), каждое из которых имеет вид (10). Ее решение позволяет находить распределение температуры в рассматриваемых областях контактного соединения для любого момента времени t_m по тепловыделению в данный момент и распределению температуры в предыдущий t_{m-1} . Для решения рассматриваемой системы целесообразно использовать, как и в [1], метод прогонки в сочетании с методом итераций. Для этого конечно-разностные уравнения для любого узла представляются в виде

$$a_1 \Theta_{k-1q}^m + a_2 \Theta_{kq}^m + a_3 \Theta_{k+1q}^m = f(\Theta_{kq+1}^m, \Theta_{kq-1}^m, \Theta_{kq}^{m-1}, P_{kq}^m(\Theta)),$$
(18)

где

$$f(\Theta_{kq+1}^{m},\Theta_{kq-1}^{m},\Theta_{kq}^{m-1},P_{kq}^{m}(\Theta)) = b_{1}\Theta_{kq}^{m-1} + b_{2}P_{kq}^{m}(\Theta) - a_{4}\Theta_{kq-1}^{m} - a_{5}\Theta_{kq+1}^{m}$$

При решении задачи будем считать, что для некоторой итерации правая часть известна, т. е. задана приближенно (для первого шага определяется по начальным параметрам режима). С учетом отмеченного система уравнений для всей рассматриваемой области распадается на совокупность из Q + 1 систем с уравнениями вида (18). Каждая такая система ЛАУ определяет распределение температуры вдоль координаты x (по длине контактного узла) и решается методом прогонки [8, 9]. Такие системы решаются для всех узлов пространственных слоев q = 1, ..., Q + 1 координаты z, т. е. находится приближенное распределение температуры для рассматриваемого момента времени. Затем уточняются величины $f(\Theta_{kq+1}^m, \Theta_{kq-1}^m, \Theta_{kq}^{m-1}, P_{kq}^m(\Theta))$ в правой части (18) и расчет повторяется. Итерационные циклы выполняются вплоть до условия их окончания. Рассмотренный алгоритм расчета температур применяется для всех последующих моментов времени переходного процесса.

Исследование температурного поля контактов при коротких замыканиях. Рассмотренный алгоритм решения реализован на ЭВМ. В работе проведено исследование температурного поля плоских контактных соединений и контактов рубящего типа из алюминиевых проводников толщиной 0,01 м с хромоникелевыми защитными покрытиями. Толщины хромоникелевых слоев и переходного слоя, их тепловые и электрические свойства (в том числе и температурная зависимость проводимости) приняты, как и в [1]. Расчет температуры нагрева предшествующего нормального режима выполнен при протекании в контактном соединении допустимого рабочего тока, линейная плотность которого (ток на единицу ширины контакта) составляла 16 кА/м (действующее значение). Остальные расчетные условия аналогичны условиям одномерной модели [1].

Результаты исследования распределения температур при коротком замыкании в сечении контактов длиной 0,04 м в различные моменты времени приведены на рис. 2 (плоский контакт) и рис. 3 (контакт рубящего типа).

Рис. 2. Распределение температур в сечении плоского контакта в различные моменты времени короткого замыкания (толщина покрытия – 1 мм; толщина переходного слоя – 0,002 мм; $J(t) = 500 \left(\sin(\omega t + \pi/2) + 0,281e^{-8,33t} \sin(\omega t + \pi/2) + 0,135e^{-1,75t} \sin(\omega t + \pi/2) + + 0,078e^{-0.833t} \sin(\omega t + \pi/2) - 1,494e^{-22,2t} \right)$ кА/м; $T_{x3} = 4,0$ с): a - t = 0,25 с; 6 - 1,0; B - 2,0; r - 4,0; $\mu - 6,0$

Рис. 3. Распределение температур в сечении контакта рубящего типа в различные моменты времени короткого замыкания (толщина покрытия — 1 мм; толщина переходного слоя – 0,002 мм; $J(t) = 500 \left(\sin(\omega t + \pi/2) + 0,281e^{-8,33t} \sin(\omega t + \pi/2) + 0,135e^{-1,75t} \sin(\omega t + \pi/2) + + 0,078e^{-0,833t} \sin(\omega t + \pi/2) - 1,494e^{-22,2t} \right) кA/м; <math>T_{\kappa_3} = 4,0$ с): a - t = 0,25 с; 6 - 1,0; B - 2,0; $\Gamma - 4,0$; $\pi - 6,0$

Из рисунков следует, что температура существенно изменяется как по длине, так и по толщине контактного узла. Причем наибольшие местные перегревы характерны для переходного и хромоникелевого слоев на краях контакта. В этих точках максимальная температура плоского контакта дос-

тигает значений порядка 680...860 °С. Причем, как показали расчеты для различных контактов, чем меньше их длина, тем больше местные перегревы. Столь резкое увеличение местных температур в режимах коротких замыканий может приводить к расплавлению проводников узла и их свариванию, т. е. к повреждению. Отмеченное следует учитывать при определении допустимой величины тока термической стойкости контактных узлов. Аналогичные результаты присущи и контактам рубящего типа. Их максимальные местные температуры достигают порядка 560...760 °C. Для рассмотренных примеров резко неравномерное распределение температур переходного режима в сечении обусловлено в первую очередь неравномерным распределением джоулевой теплоты по толщине контактов с хромоникелевыми защитными покрытиями [2, 5]. Электрическая проводимость таких покрытий более чем на порядок меньше проводимости проводников контакта, что в итоге приводит к резкому перегреву именно этих участков. Кроме того, низкие теплопроводящие свойства хромоникелевых покрытий препятствуют в переходном режиме отводу теплоты в окружающие проводники.

Так же были исследованы температуры соединений из медных проводников с посеребренными контактными поверхностями (свойства слоев близки к свойствам проводников контакта). Для них, в отличие от контактов с применением плохопроводящих покрытий, неравномерности в распределении температуры и местные перегревы не столь существенны. Более того, в большинстве случаев температура в соединении оказывается меньше температуры прилегающих токоведущих проводников. Таким образом, при оценке их термической стойкости достаточно ограничиться расчетом термической стойкости токоведущих проводников.

Полученные результаты по исследованию температур на основе двухмерной модели поля для контактов с хромоникелевыми покрытиями существенно отличаются от аналогичных результатов, полученных по одномерной модели. Для одних и тех же расчетных условий различия в веничинах максимальных местных температур достигают порядка 550 °C для обоих типов контактов. Следует отметить, что даже при принятии однородных теплофизических свойств контакта, соответствующих используемым в одномерной модели усредненным свойствам, расчетные величины температур существенно отличаются друг от друга (рис. 4). Так, отличия в расчетных значениях максимальных местных температур для одинаковых моментов времени в начальной стадии переходного режима достигают 140...200 °С и затем несколько уменьшаются. При этом для всех рассмотренных случаев расчетные температуры на основе двухмерной модели всегда больше аналогичных температур, полученных по одномерной. Таким образом, одномерные математические модели температурного поля контактных соединений не могут являться основой для оценки термической стойкости контактов с плохопроводящими защитными покрытиями, так как получаемые по ним величины температур занижены и будут приводить к ложным оценкам стойкости.

Рис. 4. Распределение температур в сечении плоского контакта в различные моменты времени короткого замыкания: а, в, д — двухмерная модель; б, г, е — одномерная

выводы

1. Предложена расчетная двухмерная модель температурного поля плоских контактных соединений и получено решение дифференциального уравнения модели с учетом распределения тепловыделения в ней на основе использования результатов расчета переходных электромагнитных процессов в многослойных структурах контактов.

2. Сопоставление расчетных температур, полученных по различным моделям, показало, что одномерная модель дает заниженные значения максимальных местных температур контактных соединений с хромоникелевыми защитными покрытиями и не может быть использована для оценки их термической стойкости в переходных режимах. Расчеты стойкости контактных соединений, представляющих собой структуры с неоднородными теплофизическими и электрическими свойствами проводников, следует проводить на основе двухмерной модели.

3. Исследования температур плоских контактных соединений и контактов рубящего типа показали, что в переходных режимах для контактов с плохопроводящими защитными покрытиями характерен значительный местный перегрев по отношению к токоведущим частям (порядка 600... ...700 °C), что может приводить к свариванию контактных поверхностей и их повреждению.

4. Проведенные исследования показали, что при оценке термической стойкости контактных соединений в традиционный метод расчета должны быть внесены существенные дополнения, учитывающие температуры плавления материалов защитных покрытий, неравномерность тепловыделения в сечении контакта, различие теплофизических и электрических свойств проводников и их зависимость от температуры. Причем, влияние отмеченных факторов наиболее сильно проявляется в контактах с резко неоднородными свойствами их проводящих слоев.

	Координаты узлов расчетной сетки					
Узлы граничной поверх- ности 1 (рис. 1б)	$x = 0: \ k = S_1 + 1, \ q = \sum_{p=1}^{i-1} Q_p + 2, \dots, \sum_{p=1}^{i} Q_p$					
	Значения коэффициентов					
	a'_1	<i>a</i> ' ₂	<i>a</i> ' ₃	a' ₄	a'5	
	0	$a_1 + a_2$	<i>a</i> ₃	a ₄	<i>a</i> 5	
Узлы граничной поверх- ности 2 (рис. 16)	Координаты узлов расчетной сетки					
	$x = l: k = S_1 + S + 1, q = \sum_{p=1}^{i-1} Q_p + 2,, \sum_{p=1}^{i} Q_p$					
	Значения коэффициентов					
	a_1'	- a' ₂	a'3	a' ₄	a'5	
	<i>a</i> ₁	$a_2 + a_3$	0	U4	<i>a</i> ₅	

		Координа	аты узлов расче	тной сетки	11. 2		
Узлы поверхности с нулевой прово- димостью	$j = 1$ (при $\gamma_{x11} = 0$): $q = 1, k = S_1 + 1$						
		Значения коэффициентов					
	<i>a</i> ' ₁	a'2	a'3	a'4	a'5		
	0	$a_1 + a_2 + a_4$	<i>a</i> ₃	0	a ₅		

Приложение П. 1

Граничные	Координаты узлов расчетной сетки						
	$j = 3$ (при $\gamma_{x13} = 0$): $q = 1, k = S_1 + S + 1$						
узлы 3		Знач	ения коэффицие	ентов			
Граничные узлы 3 (рис. 1б) Граничные узлы 4 (рис. 1б) Узлы поверхности с нулевой прово- димостью Узлы граничных поверхностей 5 (рис. 1б)	a'i	a'2	a'3	a' ₄	a'5		
	<i>a</i> ₁	$a_2 + a_3 + a_4$	0	0	<i>a</i> ₅		
	Координаты узлов расчетной сетки						
Граничные	$j = 1$ (при $\gamma_{xn1} = 0$): $q = Q + 1$, $k = S_1 + 1$						
Координаты узлов расчетной сетки $j = 3$ (при $\gamma_{x13} = 0$): $q = 1$, $k = S_1 + S + S_1$ узлы 3 (рис. 16) a_1' a_2' a_3' a_4' a_1 $a_2 + a_3 + a_4$ 0 0 0 Граничные a_1' a_2' a_3' a_4' 0 0 Граничные $y_{3,164}$ (рис. 16) a_1' a_2' a_3' a_4' Узлы поверхности $j = 1$ (при $\gamma_{xn1} = 0$): $q = Q + 1$, $k = S_1 + S$ a_3 a_4 Узлы поверхности $j = 3$ (при $\gamma_{xn3} = 0$): $q = Q + 1$, $k = S_1 + S + S_1 + S_1 + S_2$ a_3 a_4 Узлы поверхности $j = 3$ (при $\gamma_{xn3} = 0$): $q = Q + 1$, $k = S_1 + S + S_1 + S_2 + S_3 + S_3$ a_4 Узлы поверхности $j = 1$ (при $\gamma_{xi1} \neq 0$): $q = 1$, $k = 2$,, $S_1 + 1$; $q = \sum_{p=0}^{j-1} Q_p + 1$ $j = 1$ (при $\gamma_{xi1} \neq 0$): $q = 1$, $k = 2$,, $S_1 + 1$; $q = \sum_{p=0}^{j-1} Q_p$ $j = 2$: $q = 1$, $k = S_1 + 2$,, $S_1 + S + j = 3$ (при $\gamma_{xi3} \neq 0$ Узлы праничных $j = 2: q = Q + 1$, $k = S_1 + 2$,, $S_1 + S + j = 3$ q_4 $j = 2: q = Q + 1$, $k = S_1 + 2$,, $S_1 + S + j = 3$ $q_2 + 1$; $k = S_1 + S + j$	ентов						
(pric. 10)	a'_1	a'_2	a'_3	a'4	a'_5		
	0	Координаты узлов расчетной сетки $j = 3$ (при $\gamma_{x13} = 0$): $q = 1, k = S_1 + S + 1$ Значения коэффициентов a_1' a_2' a_3' a_4' a_5' a_1 $a_2 + a_3 + a_4$ 0 0 a_5 Координаты узлов расчетной сетки $j = 1$ (при $\gamma_{xn1} = 0$): $q = Q + 1, k = S_1 + 1$ Значения коэффициентов a_1' a_2' a_3' a_4' a_5' 0 $a_1 + a_2 + a_5$ a_3 a_4 0 Координаты узлов расчетной сетки $j = 3$ (при $\gamma_{xn3} = 0$): $q = Q + 1, k = S_1 + S + 1$ Значения коэффициентов a_1' a_2' a_3' a_4' a_5' 0 $a_1 + a_2 + a_5$ a_3 a_4 0 Координаты узлов расчетной сетки $j = 3$ (при $\gamma_{xn3} = 0$): $q = Q + 1, k = S_1 + S + 1$ Значения коэффициентов a_1' a_2' a_3' a_4' a_5' a_1 $a_2 + a_3 + a_5$ 0 a_4 0 Координаты узлов расчетной сетки = 1 (при $\gamma_{xi1} \neq 0$): $q = 1, k = 2,, S_1 + 1$; $q = \sum_{p=0}^{i-1} Q_p + 1, k = 2,, S_1; j = 2: q = 1, k = S_1 + 2,, S_1 + S; j = 3$ (при $\gamma_{xi3} \neq 0$): $q = 1$; $k = S_1 + S + 1,, S_1 + S + S_3; q = \sum_{p=0}^{i-1} Q_p + 1; k = S_1 + S + 2,, S_1 + S + S_3$ Значения коэффициентов a_1' a_2' a_3' a_4' a_5' a_1 $a_2 + a_4$ a_3 0 a_5 Координаты узлов расчетной сетки (при $\gamma_{xi1} \neq 0$): $q = Q + 1, k = 2,, S_1 + 1; q = \sum_{p=1}^{i} Q_p + 1, k = 2,, S_1$ $= 2: q = Q + 1, k = S_1 + 2,, S_1 + S; j = 3$ (при $\gamma_{xi3} \neq 0$): $q = Q + 1;$ $= S_1 + S + 1,, S_1 + S + S_3; q = \sum_{p=1}^{i} Q_p + 1; k = S_1 + S + 2,, S_1 + S + S_3$ $= 2: q = Q + 1, k = S_1 + 2,, S_1 + S; j = 3$ (при $\gamma_{xi3} \neq 0$): $q = Q + 1;$ $= S_1 + S + 1,, S_1 + S + S_3; q = \sum_{p=1}^{i} Q_p + 1; k = S_1 + S + 2,, S_1 + S + S_3$ Значения коэффициентов	0				
		Координа	ты узлов расчет	ной сетки			
Узлы поверхности		<i>j</i> = 3 (при ү _{xn} ;	q = 0): $q = Q + 1$	$k = S_1 + S + 1$			
с нулевой прово-		Знач	ения коэффицие	ентов			
	a'_1	a'2	a'3	a'4	a'_5		
	<i>a</i> ₁	$a_2 + a_3 + a_5$	0	<i>a</i> ₄	0		
	Координаты узлов расчетной сетки						
Ţ	$j = 1$ (при $\gamma_{xi1} \neq 0$): $q = 1$, $k = 2,, S_1 + 1$; $q = \sum_{p=0}^{i-1} Q_p + 1$, $k = 2,, S_1$;						
поверхностей 5 (рис. 1б)	$j = 2: q = 1, \ k = S_1 + 2, \dots, S_1 + S; \ j = 3 \ (\text{при } \gamma_{xi3} \neq 0): q = 1;$ $k = S_1 + S_2 + S_3 + S_4 + S_5 + S$						
	$\kappa = s_1 + s + 1, \dots, s_1 + s + s_3; q = \sum_{p=0} Q_p + 1; \kappa = s_1 + s + 2, \dots, s_1 + s + s_3$						
	Значения коэффициентов						
	a'_1	a'2	a'3	a'4	a'5		
	<i>a</i> ₁	$a_2 + a_4$	<i>a</i> ₃	0	<i>a</i> ₅		
	Координаты узлов расчетной сетки						
Узлы граничных поверхностей б	$j = 1$ (при $\gamma_{xi1} \neq 0$): $q = Q + 1$, $k = 2,, S_1 + 1$; $q = \sum_{p=1}^{i} Q_p + 1$, $k = 2,, S_1$;						
	$j = 2: q = Q + 1, k = S_1 + 2,, S_1 + S; j = 3$ (при $\gamma_{xi3} \neq 0$): $q = Q + 1;$						
(рис. 1б)	$k = S_1 + S_2$	$+1,, S_1 + S + S$	$V_3; q = \sum_{p=1}^{l} Q_p + 1;$	$k = S_1 + S + 2, \dots$	$, S_1 + S + S_3$		
узлы 3 (рис. 1б) Граничные узлы 4 (рис. 1б) Узлы поверхности с нулевой прово- димостью Узлы граничных поверхностей 5 (рис. 1б) Узлы граничных поверхностей 6 (рис. 1б)	Значения коэффициентов						
	a'_1	a'_2	a'_3	a'_4	a'5		
	a_1	$a_2 + a_5$	<i>a</i> ₃	<i>a</i> ₄	0		

					П. З
Граничные узлы 8 (рис. 1б)	К	оординаты узлов расчетной	сетки		
	x = 0	: $k = S_1 + 1$ (при $\gamma_{xi1} = 0$ и γ	$v_{xi-11} = 0$)		
		Значения коэффициенто	В		
	<i>a</i> ₁ "	a''_	a''	a''_4	a''_5
	0	$a'_1 + a'_2$	a'3	a' ₄	<i>a</i> ' ₅

Окончание П.3

	Координаты узлов расчетной сетки						
Граничные	$x = 0: k = S_1 + 1$ (при $\gamma_{x_i-11} \neq 0$)						
узлы 9 (рис. 1б)	Значения коэффициентов						
(1)	<i>a</i> ''	a''_	a''	a''	a''		
	$a_{(i-1)i}d_{(i-1),i}(\Theta)$	$a_{i1} + a'_2$	a' ₃	a' ₄	a'5		
Граничные узлы	Координаты узлов расчетной сетки						
	$x = 0: k = S_1 + 1$ (при $\gamma_{x/1} \neq 0$)						
проводимостью		Значения коэффи	циснтов				
<i>і</i> –1-го слоя	Координаты уэлов расчетной сетки граничные узлы 9 (рис. 16) к = S ₁ + 1 (при $\gamma_{xi-11} \neq 0$) Значения коэффициентов $a_{11}^{\prime\prime}$ $a_{21}^{\prime\prime}$ $a_{31}^{\prime\prime}$ $a_{(i-1)1}d_{(i-1),i}(\Theta)$ $a_{i1} + a_{2}^{\prime}$ $a_{3}^{\prime\prime}$ Координаты узлов расчетной сетки к = S ₁ + 1 (при $\gamma_{xi1} \neq 0$) сираничные узлы с нулевой оводимостью Координаты узлов расчетной сетки а'' $a_{31}^{\prime\prime}$ $a_{11}^{\prime\prime}$ $a_{22}^{\prime\prime}$ $a_{33}^{\prime\prime}$ Координаты узлов расчетной сетки к = S ₁ + 1 (при $\gamma_{xi1} \neq 0$) сираничные узлы 10 сираничные узлы 10 сираничные узлы 10 сираничные узлы 10 сираничные узлы 10 сираничные узлы 11 сираничные узлы 11 сираничные узлы 11 сираничные сираевой оводимостью сираничные хата с с с с с с с с с с с с с с с с с с	a''	a''_5				
<i>i</i> -1-го слоя Граничные узлы 10 (рис. 1б)	<i>a</i> _{<i>i</i>1}	$a_{(i-1)1}d_{(i-1),i}(\Theta) + a'_2$	a'3	a'4	<i>a</i> ' ₅		
	Координаты узлов расчетной сетки						
Граничные	$x = l: k = S_1 + S + 1$ (при $\gamma_{xi3} = 0$ и $\gamma_{xi-13} = 0$)						
(рис. 1б)	Значения коэффициентов						
Граничные узлы 9 (рис. 16) Граничные узлы с нулевой проводимостью <i>i</i> -1-го слоя Граничные узлы 10 (рис. 16) Граничные узлы с нулевой проводимостью <i>i</i> -го слоя Граничные узлы с нулевой проводимостью <i>i</i> -го слоя	<i>a</i> ''	<i>a</i> ₂ ''	a''	a''	a''		
	<i>a</i> ' ₁	$a'_{2} + a'_{3}$	0	a'4	a'5		
	Координаты узлов расчетной сетки						
Граничные узлы с нулевой	$x = l: k = S_1 + S + 1$ (при $\gamma_{xi-13} \neq 0$)						
проводимостью	ичные Координаты $x = 0: k = S$ элы 9 3начении ис. 16) a_{11}'' a_{22}'' $a_{(i-1)1}d_{(i-1),i}(\Theta)$ $a_{i1} + a_{i1}''$ иные узлы $x = 0: k = S$ улевой $x = 0: k = S$ имостью Значения го слоя a_{11}'' a_{22}''' a_{11} a_{12}''' $a_{12}''''''''''''''''''''''''''''''''''''$	Значения коэффи	циентов				
і-го слоя	<i>a</i> ₁ "	a''	a''	a''	a''		
	<i>a</i> ' ₁	$a'_{2} + a_{i3}$	$a_{(i-1)3}d_{(i-1),i}(\Theta)$	a' ₄	a'5		
Граничные	Координаты узлов расчетной сетки						
	$x = l: k = S_1 + S + 1$ (при $\gamma_{xi3} \neq 0$)						
(рис. 1б)		Значения коэффи	циентов	r:			
<i>i</i> -го слоя Граничные узлы 11 (рис. 1б)	<i>a</i> ₁ "	a''	a''	a''	a''		
	<i>a</i> ₁	$a'_{2} + a_{(i-1)3}d_{(i-1),i}(\Theta)$	<i>a</i> _{i3}	a' ₄	a'5		

ЛИТЕРАТУРА

1. Расчет нагрева плоских контактных соединений в установившихся и переходных режимах на основе одномерной модели температурного поля / Д. А. Герасимович, Ю. А. Климович, М. А. Мишкина и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2003. – № 5. – С. 10–22.

2. Электромагнитные характеристики плоских контактных соединений в переходных режимах / А. Н. Герасимович, Д. А. Герасимович, М. А. Мишкина и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2003. – № 3. – С. 12–17.

3. Лыков А.В. Теория теплопроводности. - М.: Высш. шк., 1967. - 600 с.

4. Залесский А. М., Кукеков Г. А. Тепловые расчеты электрических аппаратов. – Л.: Энергия, 1967. – 379 с.

5. Электрические характеристики алюминиевых и железных плоских контактных соединений / А. Н. Герасимович, Д. А. Герасимович, Г. В. Яковлев и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2001. – № 6. – С. 3–9.

6. Туровский Я. Техническая электродинамика. – М.: Энергия, 1974. – 488 с.

7. Метод расчета переходных электромагнитных процессов в многослойных структурах плоских контактных соединений / А. Н. Герасимович, Д. А. Герасимович, М. А. Мишкина и др. // Энергетика... (Изв. высш. учеб. заведений и энерг. объединений СНГ). – 2002. – № 6. – С. 27–35.

8. Годунов С.К. Уравнения математической физики. – М.: Наука, 1971. – 416 с.

9. Годунов С. К., Рябенький В. С. Разностные схемы. – М.: Наука, 1973. – 400 с.

Представлена кафедрой электрических станций

Поступила 18.12.2003

УДК 621.311.1.001.24

МЕТОД КОРРЕКЦИИ РАСЧЕТНОЙ ДИАКОПТИЧЕСКОЙ Z-МАТРИЦЫ СЛОЖНОЙ ЭЛЕКТРОЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ

Канд. техн. наук БАДАЛЯН Н. П.

Государственный инженерный университет Армении

В настоящее время для расчета установившихся режимов сложных электроэнергетических систем (ЭЭС) перспективным направлением являются методы диакоптики [1...10].

При построении математической модели установившегося режима ЭЭС, основанного на методе диакоптики, сеть исследуемой ЭЭС можно представить как совокупность радиально связанных оптимальных подсистем [4]. Путем удаления определенного количества ветвей строится так называемая расчетная диакоптическая Z-матрица, которая может быть представлена в виде совокупности радиально связанных N подсистем:

Предполагается, что общее число узлов рассматриваемой ЭЭС составляет (M + 1), а количество узлов отдельных подсистем $M_1, M_2, ..., M_N$, т. е. число независимых узлов определяется формулой

$$M_1 + M_2 + \cdots + M_N = M.$$

Матрица узловых собственных и взаимных сопротивлений первой подсистемы $\underline{Z}_{i_1 j_1}$ составляется относительно единственного базисного узла;