гидроэнергетика

УДК 628.112

РАСЧЕТ ЭНЕРГОЗАТРАТ ПРИ ГАЗОИМПУЛЬСНОЙ РЕГЕНЕРАЦИИ ФИЛЬТРОВ ВОДОЗАБОРНЫХ СКВАЖИН

Канд. техн. наук, доц. ИВАШЕЧКИН В. В.

Белорусский национальный технический университет

Основными технологическими параметрами импульсной обработки фильтров водозаборных скважин являются: интервал обработки фильтра по высоте, величина запасаемой в рабочей камере энергии и количество энергии, необходимой для декольматации 1 м фильтра.

Важное значение при расчете энергозатрат имеет специфика отложений на наружной поверхности фильтров. В скважинах, оборудованных проволочными фильтрами, зона интенсивной кольматации приурочена к гравийной обсыпке. Прочность сцементированного гравия на осевое сжатие может превышать $\overline{R}_{c,r} = 2$ МПа.

На рис. 1 представлен продольный разрез закольматированного проволочного фильтра 4 в виде цилиндра с толщиной стенки δ, состоящего из проволочной навивки 6, находящейся внутри сцементированной гравийной обсыпки и представляющего единую систему, которая под действием внутреннего импульсного давления и за счет сил сцепления между составляющими совместно работает на растяжение.

Если рассматривать поэтапно совместную работу комплекса «проволочная обмотка – сцементированная гравийная обсыпка» под действием растягивающих сил от давления внутри фильтра, то на I стадии трещин в обсыпке еще нет, они появляются при достижении первого предельного давления *p*₁, на II стадии трещины раскрывают-

Рис. 1. Продольный разрез закольматированного проволочного фильтра: 1 – полый цилиндр; 2 – отражатель; 3 – рабочая камера; 4 – закольматированный фильтр; 5 – пакеры; 6 – проволочная навивка

ся, но еще не являются сквозными – водопроницаемости нет. В конце II стадии ширина раскрытия трещин $a_{\rm T}$ становится равной 0,2 мм при достижении второго предельного давления $p_{\rm II}$, и их условно считают сквозными [1]. На III стадии ширина раскрытия трещин возрастает, и этот процесс продолжается до момента достижения предельного давления $p_{\rm III}$. Это момент, когда исчерпывается сопротивление проволочной обмотки растяжению: происходит разрыв проволоки и фильтр разрушается.

В качестве расчетного значения давления $p_{\text{расч}}$ при определении энергозатрат для регенерации фильтров скважин может быть принято давление, лежащее на участке между вторым p_{11} и третьим p_{111} предельными давлениями, т. е. $p_{11} < p_{\text{расч}} < p_{111}$.

Расчетная схема при обработке фильтра «квазистатическим» давлением, возникающим от взрыва водород-кислородной газовой смеси (ВКГС), представлена на рис. 1. Проведение обработки в замкнутом объеме позволит с наибольшей эффективностью использовать энергию парогазовой полости, так как нарастание давления внутри фильтра будет вызвано термодинамическим расширением парогазовой полости вследствие высокой температуры перегретого пара. Расширение парогазовой полости инициирует движение жидкости (гидропоток) и ее сжатие («квазистатическое» давление).

Применение пакеров 5 позволяет изолировать обрабатываемый интервал высотой *h*' закольматированного фильтра от ствола скважины.

После заполнения рабочей камеры 1 газовой смесью 2H₂ + O₂ ее поджигают. Реакция может протекать в виде двух режимов химического превращения: взрывного горения и детонации. Давление взрыва ВКГС на любой глубине *H* в замкнутом объеме [2]

$$p_{\rm B3D} = np_0 = n(p_{\rm aTM} + \rho gH), \tag{1}$$

где $p_{\text{атм}}$ – атмосферное давление; ρ – плотность жидкости; p_0 – начальное давление; n – степень увеличения давления, n = 10 (горение), n = 9,8 (детонация).

Удельная теплота взрыва для горения составляет $Q_r = 13,58 \cdot 10^6$ Дж/кг, показатель адиабаты продуктов взрыва $k_r = 1,17$. Для реакции детонации смеси $2H_2 + O_2$ с учетом диссоциации воды и молекул водорода, удельная теплота взрыва $Q_n = 8,715 \cdot 10^6$ Дж/кг, показатель адиабаты $k_n = 1,21$ [2].

При расчете необходимой энергии будем использовать следующие допущения: фильтр полностью закольматирован и непроницаем для жидкости; рабочая камера и отражатель выполнены абсолютно жесткими с недеформируемыми стенками; жидкость сжимаемая; материал водоприемной поверхности (проволочная навивка) и сцементированная гравийная обсыпка работают на растяжение по закону Гука; давление в рабочей камере в продуктах взрыва $p_{взр}$ зависит от вида химического превращения и рассчитывается по (1). После сжигания газовой смеси в рабочей камере задачу распространения волны давления в полости закольматированного фильтра можно рассматривать как распространение гидравлического удара в тупиковом трубопроводе, когда к участку фильтра высотой *h*' внезапно подключили источник высокого давления (рабочую камеру). Давление на границе «продукты взрыва – жидкость» резко возрастает на величину

$$\Delta p_{ya} = p_{B3p} - p_0. \tag{2}$$

Волна давления со скоростью с перемещается к отражателю, имея давление на фронте, равное Δp_{ya} . Скорость жидкости в плоскости фронта возрастает от 0 до v_0 , ее можно найти по формуле

$$v_0 = \frac{\Delta p_{y_A}}{\rho c}.$$
 (3)

При подходе фронта волны давления к отражателю вся жидкость на участке длиной h' приобретает скорость v_0 , однако ее дальнейшее движение невозможно из-за наличия пакеров, и скорость столба жидкости на отражателе в момент прихода волны будет уменьшаться до 0.

При достижении прямой волной отражателя давление в полости фильтра на участке обработки длиной h' будет равно $p_1 = p_0 + \Delta p_{yg}$, при этом жидкость будет сжиматься, а стенки закольматированного фильтра – расширяться.

Будем считать, что энергия продуктов взрыва $W_{n,B}$ затрачивается на энергию гидропотока W_{rn} , работу по сжатию жидкости $W_{c,w}$ и работу по декольматации стенок закольматированного фильтра $W_{a,c}$

$$W_{\rm rn} + W_{\rm c.w} + W_{\rm d.c} = W_{\rm n.B}$$
, (4)

Энергия гидропотока W_{rn} может быть найдена как приращение кинетической энергии жидкости, находящейся между камерой и отражателем при изменении скорости от 0 до v_0 :

$$W_{\rm rn} = mv_0^2 / 2 = \rho V_{0,*} v_0^2 / 2 = \rho \pi r_{\rm B}^2 h' v_0^2 / 2 = \pi r_{\rm B}^2 h' \frac{\Delta \rho_{y_{\rm H}}^2}{2\rho c^2}, \qquad (5)$$

где $r_{\rm B}$ — внутренний радиус фильтра; m — масса жидкости в полости фильтра объемом $V_{0,w}$.

Для расчета с можно воспользоваться формулой [3] с учетом закрепления фильтра водовмещающими породами

$$c = \sqrt{\frac{E_{\star}}{\rho}} / \sqrt{1 + \frac{E_{\star}}{E_{c.r}} \frac{d_{\scriptscriptstyle B}\Psi}{\delta\alpha_{\rm rp}}}, \qquad (6)$$

79

где α_{rp} – коэффициент, учитывающий закрепление закольматированного фильтра водовмещающими породами и согласно решениям В. С. Дикаревского толщина стенки δ как бы увеличивается в α_{rp} (раз); $E_{c.r}$ – модуль упругости сцементированной гравийной обсыпки, его можно принять равным аналогичному параметру для бетона E_6 = (15000...20000) МПа; ψ – безразмерный коэффициент, учитывающий влияние проволочной навивки; E_{π} – модуль упругости жидкости.

Коэффициент агр можно найти по формуле

$$\alpha_{\rm rp} = 1 + E_{\rm rp} d_{\rm B} / (2.7 E_{\rm c.r} \delta), \qquad (7)$$

где $E_{\rm rp}$ – модуль упругости водовмещающих пород; для песка $E_{\rm rp}$ = 39 МПа.

Коэффициент ψ приближенно можно вычислить по формуле

$$\Psi = \left[1 + \frac{E_{np}\alpha_0}{E_{c.r}(1 - \alpha_0)}\right]^{-1},$$
(8)

где $\alpha_0 = \frac{V_{np}}{V} = F_{np} / \delta h'$ – показатель содержания проволочной навивки по объему; V_{np} – объем проволоки, м³; V – общий объем стенки закольматированного фильтра, м³; F_{np} – площадь сечения проволочной навивки на участке фильтра высотой h'.

Энергия $W_{c,*}$, идущая на сжатие жидкости, по теореме Клапейрона может быть найдена как работа сил давления на пути деформации $\Delta h'$ или как половина произведения силы давления на $\Delta h'$

$$W_{\rm c.w} = \frac{1}{2} \Delta p_{\rm yg} \pi r_{\rm s}^2 \Delta h' = \frac{1}{2} \Delta p_{\rm yg} \Delta V_{\rm w} , \qquad (9)$$

где $\Delta V_{\rm *}$ – уменьшение объема жидкости в закольматированном фильтре в результате сжатия.

Для определения ΔV_{*} используем известное из теории упругости положение о том, что напряжение (давление $\Delta p_{y_{A}}$) равно произведению модуля

упругости жидкости E_* на относительное изменение объема $\frac{\Delta V_*}{V_{0,*}}$

$$\Delta p_{y_{\pi}} = E_{\pi} \frac{\Delta V_{\pi}}{V_{0,\pi}}.$$
(10)

Откуда, выразив ΔV_{*} и подставив в (9), получим

$$W_{\rm c.*} = \frac{\pi r_{\rm s}^2 h'}{2E_{\star}} \Delta p_{\rm yg}^2 \,. \tag{11}$$

Энергия $W_{\rm д.c.}$, идущая на деформацию стенок фильтра, состоит из энергии $W_{\rm p.np}$, идущей на растяжение проволочной навивки и разрушение кольматирующих отложений (создание трещин в сцементированной обсыпке) $W_{\rm p.k}$:

$$W_{\mathrm{p.np}} = W_{\mathrm{p.np}} + W_{\mathrm{p.\kappa}}.$$
 (12)

Энергия $W_{p,np}$ может быть найдена как работа деформации проволочной навивки фильтра на величину $\Delta r_{np} = r'_{np} - r_{np}$, где Δr_{np} – приращение радиуса проволочной навивки в результате деформации; r'_{np} – значение радиуса в конце деформации; $r_{np} \approx r_{B}$ – радиус проволочной обмотки до деформации. Выражая работу как половину произведения силы давления на удлинение Δr_{np} , получим

$$W_{\rm p.np} = \frac{1}{2} \Delta p_{\rm yn} \cdot 2\pi r_{\rm B} h' \Delta r_{\rm np} \,. \tag{13}$$

Для определения Δr_{np} используем известные выражения для расчета растягивающих напряжений σ_{np} в проволочной навивке площадью F_{np} от действия ударного давления Δp_{ya} и закон Гука (допущения)

$$\sigma_{\rm np} = \frac{N_{\rm p}}{F_{\rm up}} = \frac{\Delta p_{\rm yn} r_{\rm s} h'}{F_{\rm np}},\tag{14}$$

где $N_{\rm p}$ – равнодействующая сила от растягивающих напряжений $\sigma_{\rm np}$ в навивке при действии давления $\Delta p_{\rm yg}$; $F_{\rm np}$ – площадь сечения проволочной навивки на участке фильтра h'.

Величина F_{пр} равна

$$F_{\rm np} = \frac{f_{\rm np}}{S} h', \quad (15)$$

где f_{np} – площадь поперечного сечения одного витка проволоки; S – шаг навивки (расстояние в осях) проволоки диаметром d; S = d + t, t – просвет (зазор) между витками.

Проволочная навивка при наличии сцепления с окружающей сцементированной гравийной обсыпкой имеет более высокий модуль упругости E'_{np} , чем нормативный E_{np} , который корректируется коэффициентом ψ_{np} , зависящим от прочности сцепления [4] $E'_{np} = E_{np}/\psi_{np}$.

При кратковременном действии нагрузки предлагается определять ψ_{np} по формуле

$$\psi_{\rm np} = 1 - 0.7 \frac{R_{\rm c.r} F}{N_{\rm p}}, \qquad (16)$$

81

где F – площадь поперечного сечения закольматированного фильтра; $F = \delta h'$; $R_{c.r}$ – сопротивление осевому растяжению сцементированного гравия.

С одной стороны, деформация проволочной навивки

$$\varepsilon_{\rm np} = \frac{\sigma_{\rm np}}{E'_{\rm np}},\tag{17}$$

с другой:

$$\varepsilon_{\rm np} = \frac{2\pi r_{\rm np}' - 2\pi r_{\rm np}}{2\pi r_{\rm np}} \approx \frac{\Delta r_{\rm np}}{r_{\rm s}} \,. \tag{18}$$

Объединив (17) и (18) с учетом (14) и (15), получим

$$\Delta r_{\rm np} = \frac{\Delta p_{\rm yn} r_{\rm s}^2 S}{f_{\rm np} E_{\rm np}'} \,. \tag{19}$$

Подставив (19) в (13), получим

$$W_{\rm p.np} = \frac{\Delta p_{\rm yg}^2 \pi r_{\rm B}^3 S \psi_{\rm np}}{f_{\rm np} E_{\rm np}} h' \,. \tag{20}$$

Энергию создания трещин в сцементированной гравийной обсыпке $W_{p,\kappa}$ найдем как работу деформации цилиндрической оболочки, состоящей из сцементированного гравия, толщиной δ и высотой h' на величину $\Delta r_{c,r}$. Аналогично (13) получим

$$W_{\mathrm{p},\kappa} = \frac{1}{2} p_{\mathrm{l}} \cdot 2\pi r_{\mathrm{B}} h' \Delta r_{\mathrm{c},\mathrm{r}} , \qquad (21)$$

где $p_{\rm I}$ – давление в полости фильтра перед образованием трещин (первое предельное давление); $\Delta r_{\rm c,r}$ – приращение радиуса сцементированной гравийной обсыпки перед образованием трещин.

Равнодействующая сила от растягивающих напряжений в сцементированной обсыпке при достижении давления *p*₁ равна

$$Np_{\rm I} = p_{\rm I} r_{\rm B} h' \,. \tag{22}$$

Так как напряжения в сцементированной гравийной обсыпке перед образованием трещин равны $R_{c.r.}$, а в проволочной навивке напряжения достигают $\sigma_{np} = 2 \frac{E_{n.p.}}{E} R_{c.r.}$, согласно [1] для центрально-растянутых элементов

$$Np_{\rm I} = R_{\rm c.r} \left(F + 2 \frac{E_{\rm np}}{E_{\rm c.r}} F_{\rm np} \right).$$
(23)

Деформация слоя сцементированного гравия равна

$$\varepsilon_{\rm c.r} = \frac{R_{\rm c.r}}{E_{\rm c.r}} = \frac{\Delta r_{\rm c.r}}{r_{\rm B}} \,. \tag{24}$$

Откуда выразим приращение радиуса $\Delta r_{c.r}$

$$\Delta r_{\rm c.r} = \frac{R_{\rm c.r}}{E_{\rm c.r}} r_{\rm B}.$$
 (25)

Объединяя (22) и (23), выразим p_1 и подставим вместе с $\Delta r_{c,r}$ в выражение (21)

$$W_{\rm p.\kappa} = \frac{R_{\rm c.r}^2 \left(\delta + 2\frac{E_{\rm np}}{E_{\rm c.r}} \frac{f_{\rm np}}{S}\right) \pi r_{\rm B} h'}{E_{\rm c.r}} \,. \tag{26}$$

Расчеты $W_{p,\kappa}$ при максимальных значениях $R_{c,r}$ показывают, что величина $W_{p,\kappa}$ на порядок меньше $W_{p,np}$ и в расчетах ею можно пренебречь.

Реализованную энергию продуктами взрыва $W_{n,B}$ можно найти как сумму работ, произведенных волной сжатия $E_{B,c}$ и газовым пузырем E_n , т. е. $W_{n,B} = E_{B,c} + E_n$. Величину $E_{B,c}$ найдем через акустический КПД η_a , который представляет долю запасенной потенциальной энергии продуктов взрыва с начальным объемом $V_{0,n}$, уносимую волной сжатия:

$$E_{\rm B,c} = \eta_{\rm a} E_0 = \eta_{\rm a} \frac{P_{\rm B3p} V_{0,\rm n}}{k-1} \,. \tag{27}$$

Определенное опытным путем значение η_a для подводного взрыва смеси $2H_2 + O_2$ составило 0,2 % [5]. Величину E_n найдем из следующих соображений. За время *t* двойного пробега волны давления от границы раздела «пузырь – жидкость» до отражателя и обратно $t = \frac{2h'}{c}$ пузырь успеет расшириться с объема $V_{0,n}$ до $V_{1,n}$. Это время получило название времени формирования силового поля в замкнутых камерах [6].

Таким образом, оставшаяся в парогазовой полости энергия E₁, способная произвести полезную работу, будет равна

$$E_{1} = \eta_{r} E_{0} \left(\frac{V_{0.n}}{V_{1.n}} \right)^{k-1} = \eta_{r} E_{0} k_{3}, \qquad (28)$$

где η_r – гидравлический КПД (отношение потенциальной энергии пузыря, равное работе против сил внешнего давления *p*, к начальной энергии пузыря *E*₀); $\eta_r = (5...8) \%$ [5]; k_3 – коэффициент использования энергии (для па-

рового пузыря, образующегося при электрогидравлическом разряде, $k_3 = 0,15...0,3$ [6].

. Оставшаяся в парогазовой полости энергия после достижения максимальной деформации стенок фильтра будет равна

$$E_{2} = \eta_{\rm r} k_{\rm s} E_{0} \left(\frac{V_{1.\rm n}}{V_{2.\rm n}} \right)^{k-1}, \qquad (29)$$

где V_{2.п} – объем парогазового пузыря в момент достижения максимальной радиальной деформации проволочной навивки фильтра.

Тогда работа E_n, произведенная газовым пузырем, равна

$$E_{n} = E_{1} - E_{2} = \eta_{r} E_{0} k_{2} \left[1 - \left(\frac{V_{1,n}}{V_{2,n}} \right)^{k-1} \right], \qquad (30)$$

После подстановки всех слагаемых в (4) получим

$$\pi r_{\rm B}^2 h' \Delta p_{\rm y,a}^2 \left[\frac{1}{2\rho c^2} + \frac{1}{2E_{\rm sc}} + \frac{r_{\rm B} S \psi_{\rm np}}{f_{\rm np} E_{\rm np}} \right] = \frac{p_{\rm B3p} V_{0,\rm fr}}{k-1} \left\{ \eta_{\rm a} + \eta_{\rm r} k_{\rm s} \left[1 - \left(\frac{V_{1,\rm n}}{V_{2,\rm n}} \right)^{k-1} \right] \right\}.$$
(31)

Задача оценки величины объема энергоносителя $V_{0,n}$ может быть решена в первом приближении, если пренебречь неиспользованной энергией парогазового пузыря:

$$V_{0.n} \approx \frac{\pi r_{\rm B}^2 h' \Delta p_{\rm yg}^2 \left[\frac{1}{2\rho c^2} + \frac{1}{2E_{\rm x}} + \frac{r_{\rm B} S \Psi_{\rm np}}{f_{\rm np} E_{\rm np}} \right] (k-1)}{p_{\rm B3p} (\eta_{\rm a} + \eta_{\rm r} k_{\rm s})} \,.$$
(32)

Как следует из (32), режим взрывного горения ($k_r = 1,17$) предпочтительнее детонации ($k_a = 1,21$).

Пример. Определить величины запасаемой энергии в единичном импульсе при горении ВКГС и общее количество энергии, необходимой для декольматации 1 м каркасно-стержневых фильтров с проволочной навивкой, технические характеристики которых представлены в табл. 23 [7], если $\delta = 0,06$ м; кубиковая прочность сцементированного гравия $\overline{R}_{c.r} =$ = 2 МПа; сопротивление растяжению $R_{c.r} = 0,37$ МПа; $E_{c.r} = 15000$ МПа. Проволочная навивка – сталь марки 12Х18Н10Т (ГОСТ 5632–72), ее модуль упругости $E_{np} = 240000$ МПа. Просвет проволочной навивки t = 2,5 мм. Глубина H = 70 м; $\eta_a = 0,002$; $\eta_r = 0,05$; $k_3 = 0,15$.

Решение:

1. Параметры фильтров диаметрами 5, 6, 8, 10, 12, 16 дюймов возьмем из табл. 23 [7].

2. Расчеты $V_{0,n}$ производим по (32), запасаемую в камере энергию *E* вычисляем с учетом энергоемкости ВКГС. Данные расчетов приведены в табл. 1. Характер изменения удельных энергозатрат E_{yd} на 1 м фильтра и объема газовой смеси $V_{0,n}$ (при н. у.) в камере в зависимости от диаметра фильтра $d_{\rm B}$ представлен на рис. 2.

Таблица І

Типо- размер фильтра	$f_{\rm np}$, м 2	<i>S</i> , м	<i>г</i> _в , М	<i>h</i> ′, м	Скорость волны с, м/с	<i>N</i> _p , кН	V _{0.п} , дм ³	V _{0.п} , при н. у., дм ³	<i>Е</i> , кДж	Е _{уд} на 1 м, кДж
СП-5Ф	3,14.10-6	0,0045	0,087	0,035	1239	21,6	0,10	0,8	5,93	169
СП-6Ф	3,14·10 ⁻⁶	0,0045	0,098	0,04	1219	27,9	0,16	1,28	9,3	232
СП-8Ф	3,14.10-6	0,0045	0,124	0,055	1178	48,5	0,40	3,2	23,3	423
СП-10Ф	7,07.10-6	0,0055	0,151	0,07	1168	74,6	0,63	5,0	36,4	520
СП-12Ф	7,07·10 ⁻⁶	0,0055	0,177	0,08	1131	100,5	1,1	8,8	63,9	800
СП-16Ф	7,07 [.] 10 ⁻⁶	0,0055	0,228	0,13	1074	210,4	3,4	27,2	209,2	1520

Результаты расчетов запасаемой энергии в камере

Рис. 2. Зависимость величины энергозатрат $E_{y_{\rm H}}$ на 1 м фильтра (1) и объема $V_{0,{\rm n}}$ (при н. у.) ВКГС в камере (2) от диаметра фильтра $d_{\rm B}$

ЛИТЕРАТУРА

1. С Н и П 2.03.01-84 «Бетонные и железобетонные конструкции».

2. Андреев К. К., Беляев А. Ф. Теория взрывчатых веществ. – М.: Оборонгиз, 1960. – 595 с.

3. Гидравлический расчет и устройство водопроводов из железобетонных труб // В. С. Дикаревский, П. П. Якубчик, О. А. Продоус, Ю. М. Константинов. – К.: Будивельник, 1984. – 122 с.

4. Байков В. Н., Сигалов Э. Е. Железобетонные конструкции: Общий курс. – 5-е изд., перераб. и доп. – М., Стройиздат, 1991.

5. И в а шечкин В. В., Кондратович А. Н., Прокопчук Д. А. Экспериментальное исследование газодинамического способа воздействия на фильтр и прифильтровую зону скважин // Водное хозяйство и гидротехническое строительство. – 1987. – Вып. 16. – С. 41–46.

6. Об оптимизации формы разрядной камеры при электрогидроимпульсной штамповке / А. Г. Рябинин, К. К. Мертенс, В. С. Мамутов, В. А. Вагин // Высокоскоростная обработка материалов давлением: Тр. ХАИ. – 1982. – Вып. 8. – С. 120–125.

6. Гаврилко В. М., Алексеев В. С. Фильтры буровых скважин. – М.: Недра, 1985. – 334 с.

Представлена кафедрой

гидравлики

Поступила 24.09.2003