,

- 1.
 ,

 ,
 ,
 ,

 2.
- 3.
- , , , 4.
- ·

8.08.2005

621.43+ 532.525

•

, . . , . . ., . .

- , - . . . -
 - .
 - -
- -

(. 1)

$$F_{b\Sigma} = 12 \cdot 10^{-6} {}^{2}.$$

$$F_{1} = 300 \cdot 10^{-6} {}^{2}.$$

$$F_{1} = 300 \cdot 10^{-6} {}^{2}.$$

$$[2].$$

$$K = \frac{B}{b};$$

$$\delta = \frac{\Delta}{b}$$

$$\bar{h} = \frac{H_{1}}{B}.$$

62

$$M = \frac{1}{2} \qquad N = \frac{\mu_1}{\mu_2}, \quad \rho \quad \mu - -$$

$$(1)$$

$$(2). \qquad : = 37,5; \ \delta = 10; \ \overline{h} =$$

$$:$$

$$\overline{q}_1$$
,

$$\overline{q}_1 = \frac{\rho W_1^2}{2\Delta p} \,, \tag{1}$$

:

$$= 2 - 1 - 2 - 1;$$

$$1; W_1 - 1;$$

$$:$$

:

$$\operatorname{Re}_{\mathrm{l}} = \frac{H_{\mathrm{l}}W_{\mathrm{l}}}{v_{\mathrm{l}}}; \qquad (2)$$

We₁ =
$$\frac{2\beta_W b}{1+\xi_c} \frac{\Delta p}{\sigma_2}$$
, (3)

$$\beta_W = 1 + \upsilon_s^2 - 2\upsilon_s \cos \alpha , \ \upsilon_s = \frac{W_2}{W_1} - \dots$$

$$\upsilon_s = 1 \qquad \qquad \beta_W = 4 \sin^2 \alpha/2; \ \xi - \dots$$

$$(3), \qquad \delta \ge 2 \ \xi = 0.045.$$

. 1

•

•

.

. :

.

	ρ ₂ , / ³	$\mu_2 \cdot 10^{-3}$, ·	$\sigma_2 \cdot 10^{-3}$, /
	789	1,19	22,03
-1	805	1,31	28
	998	1,01	72,75

 $(1) \\ 0_1 = 0,175...0,22 ; \\ 0_1 = 330...380 ;$

•
$$_{01} = 0,175...0,22$$

• $_{01} = 330...380$;
• $W_1 = 98...100$ / ;

,

$$\dot{m}_1 = 0,052...0,062$$
 / .

$$\mu_1 = (19,55...21,8) \cdot 10^{-6} \quad ; \qquad _1 = 1,9...1,93 \quad / \ ^3, \\ \text{Re}_1 = 1,98 \cdot 10^5, \\ \cdot \\ \cdot \\$$

$$d_{c1}$$
 d_{c2}

6200...9700.

(1000 /)

 $(\alpha_0 = \text{const};$

= const; \overline{h} = const; = const N = const),

(. 3)

 $\Delta = {}_{2} - {}_{1}: 1 - \Delta = 0,105 \qquad ; 2 - 0,15; 3 - 0,25; 4 - 0,35;$ 5 - 0,455; 6 - 0,65

,
$$h = (1,5...2,0)h_0$$
, h , $\Delta = const$
 $\delta = const$, μ_2 , σ_2 , -
 ∞ , $-$, δ

. *3*. ; 2 – : ; 3 – 1 –

 $\overline{X} = \frac{X_C}{b}$ $\overline{X}_{10} = 0,303\overline{q}_{10} - 0,71$, (4) $\overline{X}_{10} = \overline{X}_C \cdot 10^{-2} ; \ \overline{q}_{10} = \overline{q}_1 \cdot 10^{-2} .$ 1,4 1,2 1 0,8 0,6 0,4 () 0,2 (4). \overline{q}_1 0 . 4, -0,2 (-) -0,4 0 1 2 3 4 5 6 (♦) 7 . 4. _ $(R^2 \quad 0,9954).$

65

$$[4, 5]$$
 , C_n :

С

$$C_{n} = +C . (5)$$
[4]
,
= 1,0...1,2.
,
(
)

$$C = \frac{0,357}{2,64\overline{q}_1^{0,37} - 2,9\overline{q}_1^{0,195} + 1},$$
(6)

, [5], -
$$\overline{q_1}$$
 .

24.06.2005

,

_

66