

The computer method of simulation of thermal stress condition of three-dimension parts is suggested. The results of deformations and stress simulation in different points of a part distributed in space are obtained.

А. Н. ЧИЧКО, Ю. В. ЯЦКЕВИЧ, В. Ф. СОБОЛЕВ, БГПА

ТРЕХМЕРНОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОНАПРЯЖЕННОГО СОСТОЯНИЯ СТАЛЬНОЙ ДЕТАЛИ

Целью настоящей работы является разработка метода моделирования эволюции трехмерных пространственных тепловых полей и расчет тангенциальных, нормальных деформаций и напряжений, возникающих в различных пространственных точках при интенсивном охлаждении предварительно нагретой металлической детали (пуансона) (рис. 1).

Эволюция трехмерных тепловых полей моделировалась на основе уравнения нестационарной теплопроводности, содержащего функцию тепловыделения:

$$\frac{\partial T}{\partial \tau} = \frac{1}{c(T)\rho} \left(\frac{\partial \left(\lambda(T)\frac{\partial T}{\partial x}\right)}{\partial x} + \frac{\partial \left(\lambda(T)\frac{\partial T}{\partial y}\right)}{\partial y} + \frac{\partial \left(\lambda(T)\frac{\partial T}{\partial z}\right)}{\partial z} + F \right), \quad (1)$$

где τ — время; x, y, z — декартовы координаты; ρ — плотность материала; T — температура; $\lambda(T)$ коэффициент теплопроводности материала; c(T) удельная теплоемкость материала; F — функция объемной плотности мощности выделения теплоты при изменении структуры кристалла (фазового перехода):

$$\frac{\partial Q}{\partial \tau} = F = \begin{cases} \left(1,6\left(1-\frac{Q}{Q_{n}}\right)\frac{Q}{Q_{n}}+0,2\right)\xi, \text{ если } T < T_{n} \text{ и } Q < Q_{n}, \\ -\left(1,6\left(1-\frac{Q}{Q_{n}}\right)\frac{Q}{Q_{n}}+0,2\right)\xi, \text{ если } T > T_{n} \text{ и } Q > 0, \end{cases} (2)$$

где T_n — температура фазового перехода; Q_n — максимальная плотность энергии, выделяющейся при изменении структуры кристалла; Q — плотность энергии, выделившейся в данной точке с момента начала фазового перехода до текущего момента времени (Q=0 — аустенит, $Q=Q_n$ — феррит/перлит); ξ — максимальная мощность выделения теплоты при фазовом переходе.

Для моделирования характеристик термоупругости была использована система уравнений, включающая деформации, напряжения и температуры для сплошной среды [1, 2]:

$$\begin{cases} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = 0, \\ \frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} = 0, \\ \frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_z}{\partial z} = 0, \end{cases}$$
(3)

УДК 669.27:519

$$\begin{cases} \frac{\partial \tau_{xy}}{\partial y} - \frac{\partial \tau_{yx}}{\partial x} = 0, \\ \frac{\partial \tau_{zy}}{\partial y} - \frac{\partial \tau_{yz}}{\partial z} = 0, \\ \frac{\partial \tau_{xz}}{\partial z} - \frac{\partial \tau_{zx}}{\partial z} = 0, \end{cases}$$
(4)

$$\begin{cases} \sigma_x = E\varepsilon_x = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial u}{\partial x} - \alpha \theta \right), \\ \sigma_y = E\varepsilon_y = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial v}{\partial y} - \alpha \theta \right), \\ \sigma_z = E\varepsilon_z = \frac{E}{(1+\alpha)\theta} \left(\frac{\partial w}{\partial z} - \alpha \theta \right), \\ \tau_{xy} = G\gamma_{xy} = G \left(\frac{\partial u}{\partial y} - \varphi_z \right), \\ \tau_{yx} = G\gamma_{yx} = G \left(\frac{\partial v}{\partial x} + \varphi_z \right), \\ \tau_{yz} = G\gamma_{yz} = G \left(\frac{\partial v}{\partial z} + \varphi_x \right), \\ \tau_{zy} = G\gamma_{zy} = G \left(\frac{\partial w}{\partial y} - \varphi_x \right), \\ \tau_{zx} = G\gamma_{zx} = G \left(\frac{\partial w}{\partial x} + \varphi_y \right), \\ \tau_{xz} = G\gamma_{xz} = G \left(\frac{\partial w}{\partial z} - \varphi_y \right), \end{cases}$$

Рис. 1. Внешний вид детали (пуансона) и расположение каналов охлаждения внутри нее

Рис. 2. Расчетное распределение температур (а) и напряжений (б) в продольном сечении детали через 60 с после начала охлаждения

где ε_x , ε_y , ε_z — нормальные деформации по осям *x*, *y*, *z*; τ_{xy} , τ_{yz} , τ_{zx} , τ_{yy} , τ_{zy} , τ_{xz} — тангенциальные деформации; σ_x , σ_y , σ_z — нормальные напряжения элементов структуры по осям *x*, *y*, *z*; γ_{xy} , γ_{yz} , γ_{zx} , γ_{yx} , γ_{yz} , γ_{zz} , γ_{yz} , γ_{zz} , τ_{xy} , γ_{zy} , γ_{zz} — тангенциальные напряжения; *u*, *v*, *w* перемещения точек среды по осям *x*, *y*, *z*; ϕ_x , ϕ_y , ϕ_z — тангенсы углов поворота точек среды вокруг своей оси в плоскостях *x*, *y*, *z*; *E* — модуль Юнга; *G* — модуль сдвига; θ — остаточная температура; α — коэффициент линейного расширения.

Системы уравнений (3)—(5) описывают трехмерное распределение напряжений и деформаций при охлаждении детали. Система (5) описывает среду Гука. Остаточная температура вычислялась из состояния теплового поля:

$$\theta = T - T_0, \tag{6}$$

где T₀ — температура начала моделирования.

Численное моделирование проводилось в два этапа. На первом этапе, используя конечно-разностное представление формул (1)—(2), вычисляем изменяющиеся во времени поля температур внутри пуансона [3]. Затем выбираем момент, при котором в критических областях пуансона наблюдались наибольшие градиенты температур. На втором этапе, используя конечно-разностное представление формул (3)—(6), определяем поля деформаций и напряжений для выбранного температурного распределения (рис. 2).

Моделируемое пространство было разбито с помощью равномерной сетки на кубические элементы с шагом $\Delta x = \Delta y = \Delta z = 4$ мм. Полный размер пространственной структуры состоял из 70×106×56=415520 элементов. В зависимости от его пространственного расположения каждому элементу присваивались физические свойства (теплопроводность, теплоемкость, плотность, коэффициенты сдвига, расширения, вязкость и т. д.). Так, элементам внутри пуансона присваивались теплофизические свойства стали (12XH3A):

- удельная теплоемкость *c*=1029 Дж/(кг · °C);
- теплопроводность λ=29 Вт/м;
- плотность р=7150 кг/м³;
- температура фазового перехода T₁=727 °C;
- плотность энергии перехода Q₁=627 кДж/кг;

• коэффициент линейного расширения — $\alpha = 11,9 \cdot 10^{-6} K^{-1};$

- модуль Юнга $E = 19,5 \cdot 10^{10}$ Па;
- модуль сдвига $G = 0.8 \cdot 10^{10}$ Па

и начальные условия:

- начальная температура $T_0 = 820^{\circ}$ С;
- перемещения центров элементов u = v = w = 0;

• тангенсы углов поворота элементов — $\phi_x = \phi_y = \phi_z = 0.$

Элементам среды вокруг пуансона присваивались теплофизические свойства масла:

• удельная теплоемкость — $c = 1300 \, \text{Дж/(кг \cdot °C)};$

- теплопроводность $\lambda = 1,5$ Вт/м;
- плотность $\rho = 900 \ \kappa \Gamma / M^3$.

В качестве граничного условия при расчете температурных полей принималась постоянная температура масла $T = T_0 = 50^{\circ}$ С. Граничные условия при расчете полей деформаций и напряжений: $\varepsilon_x = \varepsilon_y = \varepsilon_z = 0$, $\tau_{xy} = \tau_{yz} = \tau_{xy} = \tau_{zy} = \tau_{zz} = 0$.

Проведенные расчеты термонапряженного состояния и их сравнение с экспериментальными данными, предоставленными представителями завода ЗАО "Атлант", показали адекватность методов моделирования.

Литература

 Спеддон И., Берри Д. Классическая теория упругости. М.: Физматгиз, 1961.

2. Паркус Г. Неустановившиеся температурные напряжения. М.: Физматгиз, 1963.

3. Чичко А. Н., Яцкевич Ю. В. Новый метод выбора размеров питателей литниковой системы на основе трехмерного компьютерного моделирования// Докл. НАН Беларуси. 1999. №1. С. 130—133.