

1)

$$\begin{cases} \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + X = 0; \\ \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + Y = 0; \\ \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + Z = 0, \end{cases}$$
(1)

$$\begin{cases} \sigma_{xx} = \lambda e + 2\mu\varepsilon_{xx} - (3\lambda + 2\mu)\alpha T; \\ \sigma_{yy} = \lambda e + 2\mu\varepsilon_{yy} - (3\lambda + 2\mu)\alpha T; \\ \sigma_{zz} = \lambda e + 2\mu\varepsilon_{zz} - (3\lambda + 2\mu)\alpha T; \\ \sigma_{xy} = 2\mu\gamma_{xy}; \ \sigma_{yz} = 2\mu\gamma_{yz}; \ \sigma_{zx} = 2\mu\gamma_{zx}, \end{cases}$$

$$(2)$$

[2]:

v

$$T(x, y, z, \tau) = \begin{cases} T_0, \tau = 0; \\ T_1, 0 < \tau \le \frac{L_1}{\upsilon}; \\ T_2, \frac{L_1}{\upsilon} < \tau \le \frac{L_1 + L_2}{\upsilon}; \\ \dots \\ T_n, \frac{\sum_{k=1}^{n-1} L_k}{\upsilon} < \tau \le \frac{\sum_{k=1}^n L_k}{\upsilon}, \end{cases}$$
(5)

,

•

-

$$T_{0} - ; n - ; n - ; i - ; T_{i} (i = 1, 2, ..., n) - ; i - ; i - ; ; i - ; ; i - ; ; i - ; ; ; i -$$

(1)...(5).

(6) (1),

$$O(\Delta x^{2} + \Delta y^{2} + \Delta z^{2} + \Delta \tau^{2}):$$

$$\frac{T^{n+1} + T^{n}}{\Delta \tau} = \frac{1}{2} (\Lambda_{x} + \Lambda_{y} + \Lambda_{z})(T^{n+1} + T^{n}),$$
(6)

$$:$$

$$\Lambda_{x}T^{n} = a(T)(T^{n}_{x+1,y,z} - 2T^{n}_{x,y,z} + T^{n}_{x-1,y,z}) / \Delta x^{2};$$

$$\Lambda_{y}T^{n} = a(T)(T^{n}_{x,y+1,z} - 2T^{n}_{x,y,z} + T^{n}_{x,y-1,z}) / \Delta y^{2};$$

$$\Lambda_{z}T^{n} = a(T)(T^{n}_{x,y,z+1} - 2T^{n}_{x,y,z} + T^{n}_{x,y,z-1}) / \Delta z^{2}.$$

-

_

$$a(T) = \frac{\lambda(T)}{c(T)\rho(T)}.$$

(

):

63

(6)

,

:

_

[3].

$$\begin{cases} (\lambda + \mu)\frac{\partial e}{\partial x} + \mu \nabla^2 u - (3\lambda + 2\mu)\alpha \frac{\partial T}{\partial x} + X = 0; \\ (\lambda + \mu)\frac{\partial e}{\partial y} + \mu \nabla^2 v - (3\lambda + 2\mu)\alpha \frac{\partial T}{\partial y} + Y = 0; \\ (\lambda + \mu)\frac{\partial e}{\partial z} + \mu \nabla^2 w - (3\lambda + 2\mu)\alpha \frac{\partial T}{\partial z} + Z = 0, \end{cases}$$
(7)

$$e = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} -$$

:

[4].

(7)

(8)

-

_

(5),

$$\epsilon_{x} = \frac{u_{x+1} - u_{x-1}}{2\Delta x};$$

$$\epsilon_{y} = \frac{v_{y+1} - v_{y-1}}{2\Delta y};$$

$$\epsilon_{z} = \frac{w_{z+1} - w_{z-1}}{2\Delta z};$$

$$\gamma_{xy} = \frac{v_{x+1} - v_{x-1}}{2\Delta x} + \frac{u_{y+1} - u_{y-1}}{2\Delta y};$$

$$\gamma_{yz} = \frac{w_{y+1} - w_{y-1}}{2\Delta y} + \frac{v_{z+1} - v_{z-1}}{2\Delta z};$$

$$\gamma_{zx} = \frac{u_{z+1} - u_{z-1}}{2\Delta z} + \frac{w_{x+1} - w_{x-1}}{2\Delta x}.$$
(8)

(2).

-Object

,

Delphi 6.0 32

Pascal

. 1

Microsoft Windows.

250×250×300

40

,

,

,

$$T_{0} = 20 \text{ °C}$$

= 20 °C.

•

,

-

1

40X

-

	t, °								
	0	100	200	300	400	500	600	700	800
, / 3	7820	7800	7770	7740	7700	7670	7630	7590	7610
c, /(·°)	496	508	529	563	592	622	634	664	684
λ , /(·°C)	41,0	40,0	38,0	36,0	34,0	33,0	31,0	30,0	27,0
, 10 ⁻⁶ 1/°	11,8	12,2	13,2	13,7	14,1	14,6	14,8	12,0	12,0
$E, 10^9$ / ²	214	211	206	203	185	176	164	143	132

 $\lambda = 0.034$ /(\cdot); = 1009 /(\cdot);

,

 $\rho = 1,29$ / ³ . 2

. 3

.

.

.

,

4400

65

-

.

-

.

(. 2)

	<i>T</i> ₂	T_3	T_4	T_5	T_6
$ \stackrel{L_1}{\longleftrightarrow} $	$ \stackrel{L_2}{\longleftrightarrow} $	$ \xrightarrow{L_3} $	$ \xrightarrow{L_4} $	$\leftarrow L_5 \rightarrow$	$ \stackrel{L_6}{\longleftrightarrow} $

. 3.

~

»

