

-

. (), [3].

, .

, -- --

;

- ;
$$f_1$$
 - ; r -
 $P = \frac{2}{r}, P$ const,
 $P = \frac{1.5}{r}, P_1 = \frac{1.3}{r}, P_2$

$$\Delta P_1 = P \frac{r_a}{r} \,. \tag{3}$$

; _ _ _ _

-

-

$$\varphi(\omega_r, r) = \left(1 + \frac{r_a}{r}\right) f(\omega_r, r) + k_1 \omega_r^{1,3} + k_2 \omega_r^{1,5} + k_3 + k_4 \omega_r^2 - M \quad \omega_r = 0, \quad (4)$$

-

f(r, r) (2); $k_1 k_2$

;
$$k_3 = \Delta P_{\perp}$$
; M_{\perp} .

$$\begin{cases} M = \frac{1}{2} S \rho v \quad R \quad (a_1 R \quad \omega_r + a_2 v \quad), \\ \frac{\omega_r R}{v} \ge Z_{\text{opt}}; \end{cases}$$
(5)

$$\begin{cases} M = \frac{1}{2} S \rho R \left(b_1 R^2 \omega_r^2 + b_2 v \right), \\ \frac{\omega_r R}{v} \langle Z_{\text{opt}}, \end{cases}$$
(6)

S - , ; v - , ; r -; – – ; R – – ; Z_{opt} – –

$$(.2).$$

$$:$$

$$\begin{cases}
M = \frac{1}{2} S \rho v R \left({}_{1}(h) R \omega_{r} + C_{2}(h) v \right), \\
\frac{\omega_{r} R}{v} \ge Z_{opt}(h); \end{cases}$$

$$\begin{cases}
M = \frac{1}{2} S \rho R \left({}_{3}(h) R^{-2} \omega_{r} + C_{4}(h) v^{-2} \right), \\
\frac{\omega_{r} R}{v} \ge C_{opt}(h); \end{cases}$$

$$(7)$$

$$\begin{cases} M = \frac{1}{2} S \rho R \left({}_{3}(h) R - \omega_{r} + C_{4}(h) v - \right), \\ \frac{\omega_{r} R}{v} \langle Z_{\text{opt}}(h), \end{cases}$$
(8)

,

$$_{1}(h), C_{2}(h), _{3}(h), _{4}(h), Z_{opt}(h) - h$$

.

:

.

,

,

$$_{pm}=\psi(h, Z). \tag{9}$$

•

-

-

,

.

$$C_{p}(\omega_{r}, v) = K_{5}(V_{cp})\omega_{r}M(\omega_{r}, v); \qquad (10)$$

$$\left(\omega_{r}, r\right) = \frac{f(\omega_{r}, r)}{f(\omega_{r}, r) + \sum \Delta P(\omega_{r}, r)}, \qquad (11)$$

 $K_5(v)$

$$K_5(v_{\rm cp}) = \left(\frac{1}{2}\rho S v_{\rm cp}^3\right)^{-1},$$
 (12)

 $P\left(r,r\right) - \tag{4}.$

$$F(\omega_r, r, v_{\rm cp}) = \frac{K_5(v_{\rm cp})\omega_r M(\omega_r, v_{\rm cp})f(\omega_r, r)}{f(\omega_r, r) + \sum \Delta P(\omega_r, r)} .$$
(13)

(4)

•

—

$$F(\omega_r, r, v_{\rm cp}) = C_p \eta = {}_5(v_{\rm cp}) f(\omega_r, r).$$
(14)

$$\left(\omega_{r}, r, v_{\rm cp}\right) = F\left(\omega_{r}, r, v_{\rm cp}\right) + \lambda \varphi\left(\omega_{r}, r, v_{\rm cp}\right), \qquad (15)$$

$$\begin{cases} \frac{\partial}{\partial \omega_{r}} (\omega_{r}, r, v_{cp}) \\ \frac{\partial}{\partial \omega_{r}} = 0; \\ \frac{\partial}{\partial r} (\omega_{r}, r, v_{cp}) \\ \frac{\partial}{\partial r} = 0; \\ \varphi(\omega_{r}, r, v_{cp}) = 0. \end{cases}$$
(16)

, -

$$\begin{cases} \frac{\partial \varphi(\omega_r, r, v_{cp})}{\partial \omega_r} \frac{\partial f(\omega_r, r)}{\partial r} = \frac{\partial \varphi(\omega_r, r, v_{cp})}{\partial r} \frac{\partial f(\omega_r, r)}{\partial \omega_r}; \\ \varphi(\omega_r, r, v_{cp}) = 0. \end{cases}$$
(17)

MatLab,

:

r .

.

•

,

-

•

.

r

,

$$I_{1} = \frac{\sqrt{\left((E_{0} - U_{q})X_{q}\frac{p_{r}}{2f_{1}} - U_{d}r_{a}\right)^{2} + \left((E_{0} - U_{q})r_{a} - U_{d}X_{d}\frac{p_{r}}{2f_{1}}\right)^{2}}}{r_{a}^{2} + X_{d}X_{q}\frac{(p_{r})^{2}}{(2f_{1})^{2}}}$$

,

:

 $_0$ – ; U_d , U_q – c :

$$U_d = U_c \sin\theta; \tag{19}$$

$$U_q = U_c \cos\theta, \tag{20}$$

 θ –

;
$$U_{
m c}$$
 –

$$U_{c} = E_{0} \left(\cos -\sin \frac{r_{a} - X_{d} \frac{p_{-r}}{2 f_{1}} tg(-\varphi_{p})}{r_{a} tg(-\varphi_{p}) - X_{q} \frac{p_{-r}}{2\pi f_{1}}} \right)^{-1};$$
(21)

, , –

p —

cos _p.

, :

$$E_0 = C \qquad _0 \quad r. \tag{22}$$

$$P = 3I_1 U_c \cos p = f(r, \theta, p).$$
 (23)

$$P_{\rm a} = 3I_1^2 r_a.$$
 (24)

$$\Delta P_{\rm a} = \frac{r_a}{3\cos^2 \varphi_p} U_{\rm c}^{-2}(\ , \ , \varphi_p) f^2(\ , \ , \varphi_p), \qquad (25)$$

$$U_{c}(r, \theta, p) = f(r, \phi_{p}, v) = f(r, \phi_{p}) \left(1 + \frac{r_{a}}{3\cos^{2}\phi_{p}}U_{c}^{-2}(r, \phi_{p})f(r, \phi_{p})\right) + \Delta P_{a}(r, \phi_{p}) + k_{1}r^{1,3} + k_{2}r^{1,5} + k_{3} + k_{4}r^{2} - rM(r, \phi_{p}) = 0,$$

$$P_{a}(1,)$$

$$(1,)$$
 $5...8 \%$ $(5)...(9)$ $(18)...(26)$

$$f(r, \theta, n) \qquad (r, \theta, n, v) = 0.$$

[5].

$$x_d = 0.53$$
 , $x_q = 1.1$.
 $r = 0.1$.
 $P_{\perp} = 375$.
 $P = 7.46 \frac{2}{r^2}$.

(26)

$P_{1} = 149 r^{1,3}, .$	$P_{\perp} = 121$
r ·	-
R = 5 , $H = 7,5$.	$S = 300^{-2}$,
$D_{opt} = 2$,	$C_{pmax} = 0,4.$ - (4)(8): $a_1 = -0,117; a_2 =$
$0,41, b_1 = 0,62, b_2 = -3,1.$	410 / MatLab -
. 1, 2	· -
,	, -
90,092,46 % ,	710 / -
. 2	
	, - . , -
	, - - -
	, -
	- -
	,
380/660 , 220/380 .	50
	· 1

-	,		-
-	-		,
-		,	%

v , /c	$r_{\rm opt}$,	$P_{\rm opt.}$.,		
7	3,0	20,50	0,332	90,0
8	2,5	31,120	0,336	91,17
9	2,3	43,560	0,326	92,46
10	2,0	60,0	0,329	91,08

2	
2	

				, v 10	$/, \cos = 1$	
ν, /c	- <i>f</i> ₁ ,	<i>U</i> ₁ ,	,	- ,	F,	,
4	6,96	104,0	3,43	0,79	0,28	0,354
5	8,02	199,5	7,36	0,87	0,31	0,356
6	9,88	145,0	13,20	0,90	0,32	0,355
7	11,65	175,46	21,36	0,919	0,32	0,348
8	13,7	204,27	32,24	0,928	0,33	0,355
9	15,0	234,0	46,20	0,936	0,333	0,355
10	16,9	267,0	63,70	0,94	0,335	0,356

1.

-

1. . 2178830 , 2 7F 03 D 3/00. / . . . – . 27.01.2002 // . – 2002. – 3. 2. 20030243 18.03.2003. / . . , . . , . . , . . 27.08.2003. 3. 20030828 , · · · · · · · / . . , . . , 1988. – 280(.

11.11.2004