l,	,	f_0 ,	у,	S , ·	Ι,	Ι,
U = 110 , $-500/27$						
20	2,5	1	1,01	181	19,5	25,3
27,5	2,5	1,38	1,01	232	18,8	22,0
U = 220 , $-500/27$						
30,8	4	1,85	1,51	328	26,6	25,3
40,5	4	2,43	1,51	278	21,4	22,1
U = 330 , $2 -500/27$						
48	4,5	2	1,29	640	31,6	37,0

1.

 1. The mechanical effects of short-circuit currents o en-air substations (rigid or flexible bus-bars). Brochure from CIGRE. SC 23. – aris, 1996.

 2.
 30323–95.

11.12.2004

518.1

18

-

•

$$W(x, 0, p) = \frac{W(x, 0, p)}{1 + W(0; 1, 0, p)}.$$
(3)

, .

$$x$$
 0 1,

1

$$W \quad (x, 0, p) = \frac{W \quad (x, 0, p)}{W \quad (1, 0, p)(1 + 8T_{\mu}^2 p) + (4T_{\mu} + 8T_{\mu}^3 p^2)}, \tag{4}$$

,

:

$$\sin\left(\omega\frac{L}{a}\right) + \omega\frac{L}{a}\mu\cos\left(\omega\frac{L}{a}\right) = 0;$$
(5)

$$\omega = \frac{\pi (1+2n)}{2\frac{L}{a}(1-e)}, \quad n \in \mathbf{N}.$$
 (6)

(5) -
$$(6) - (5) - (5) (6) - (5) (6) - (5) (6) - (6)$$

MathCad, MatLab,

.

20

μ —

$$\binom{2}{2} + \binom{2}{1}\binom{2}{2} + \binom{2}{2} \dots \binom{2}{1} \binom{2}{2} \binom{2}{2} \dots,$$
 (7)

.

.

(= 0,5;
$$L = 10$$
 ; $a = 40$ /; $\mu = 5$)
. 4 (1).

MathCad 2000 Professional.

21