Микротвердость быстрозатвердевшей фольги исследуемого сплава с ростом времени выдержки при комнатной температуре монотонно увеличивается. Причина увеличения микротвердости быстрозатвердевшей фольги сплава Bi₂₀In₂₈Sn₅₂ заключается в улучшении структуры границ зерен и фаз благодаря диффузионным процессам, активно протекающим при комнатной температуре.

Таким образом, фольга сплава Bi₂₀In₂₈Sn₅₂, полученная сверхбыстрым охлаждением из расплава, состоит из ε- и γ-фаз. Дисперсные частицы ε-фазы вкраплены в γ-фазе. Средние длины хорд случайных секущих на сечениях выделений ε- и γ-фаз равны 1,7 и 2,6 мкм, соответственно, а удельные поверхности межфазной границы – 0,86 мкм⁻¹. Фаза In₄Sn (γ-фаза) затвердеванием с образованием текстуры (0001). Стабилизация границ зерен и фаз приводит к росту микротвердости фольги при комнатной температуре.

Литература

1. Шепелевич В.Г. Быстрозатвердевшие легкоплавкие сплавы /В.Г. Шепелевич. – Минск: БГУ, 2015. – 192 с.

2. Shepelevich V.G. The microstructure and microhardness of rapidly solidified foils of eutectic alloy In -47at. % Sn / V.G. Shepelevich, L.P. Scherbachenko // British Journal of Science. Education and Culture. -2015. - Vol. $111 - N \ge 1(7) - Pp. 863-869$.

3. Салтыков С.А. Стереометрическая металлография. М.: Металлургия, 1976. – 270 с.

4. Русаков А.А. Рентгенография металлов / А.А. Русаков. – М.: Металлургия, 1977. – 329 с.

5. Вассерман Г. Текстуры металлических материалов / Г. Вассерманн, И. Гревен. М.: Металлургия, 1969. – 655 с.

УДК 535.37

ВХОЖДЕНИЕ ИОНОВ ТУЛИЯ В КРИСТАЛЛИЧЕСКУЮ И СТЕКЛЯННУЮ ФАЗЫ В ОКСИФТОРИДНОЙ СТЕКЛОКЕРАМИКЕ Ясюкевич А.С.¹, Кулешов Н.В.¹, Рачковская Г.Е.², Захаревич Г.Б.², Трусова Е.Е.²

¹НИЦ Оптических материалов и технологий БНТУ Минск, Республика Беларусь ²Белорусский государственный технологический институт Минск, Республика Беларусь

Оксифторидные стекла, активированные ионами редкоземельных элементов (РЗЭ) представляют значительный интерес как прекурсоры для получения нанокерамических материалов, которые сочетают в себе низкую энергию фононов фторидов (CaF₂, SrF₂, PbF₂, и др.) с химической и механической стабильностью оксидных матриц. В таких материалах редкоземельные ионы частично входят как в стеклянную, так и в керамическую фазы и есть возможность в некоторой степени формировать спектроскопические характеристики наностеклокерамики.

Для получения лазерной генерации в области спектра ≈1800-1900 нм привлекательными являются материалы, активированные ионами тулия. В данной работе мы изучали оксифторидные стекла состава 30 SiO₂+10 GeO₂+20 PbO+30 РbF₂+10 CdF₂+х Tm₂O₃ (x = 0,1; 0,5; 1,0; 2,0) и стеклокерамики, полученные на основе этих стекол при вторичной термообработке при температуре 400 °C. Гидростатическим методом были определены плотности стекол и по их молярному составу были рассчитаны концентрации ионов тулия в исходных стеклах. В работе [1], где исследовались стекломатериалы близкого состава, было показано, что в результате вторичной термообработки при температуре 400-420 °С из исходного стекла образуется стеклокерамика с кристаллической фазой β-PbF₂.

При изучении оксифторидных стекол основное внимание нами уделялось разработке спек-

троскопического метода определения относительного содержания ионов тулия в стеклянной и кристаллической фазах в оксифторидной стеклокерамике. Наш метод исследования основан на сравнении спектров поглощения стекол и стеклокерамик, полученных в результате термообработки. Спектры поглощения образцов в виде пластинок толщиной ≈1 мм регистрировались на спектрофотометре Cary 5 000 при комнатной температуре. Распределение кристаллической фазы в наших материалах после термообработки было неоднородным, что приводило к появлению непрозрачных областей в объеме образцов. В работе [2] были представлены спектры сечений поглощения Tm:PbF2. Спектры сечений поглощения исходных стекол и коэффициенты поглощения полученных стеклокерамик были определены нами. Спектр коэффициента поглощения стеклокерамики $k_{abs}(\lambda)$ может быть представлен в виде

$$k_{abs}(\lambda) = \sigma_{abs}^{gl}(\lambda) N_{Tm} x_1 + \sigma_{abs}^{cr}(\lambda) N_{Tm} x_2, \quad (1)$$

где $\sigma_{abs}^{gl}(\lambda)$, $\sigma_{abs}^{cr}(\lambda)$ – сечения поглощения ионов тулия в стеклянной и кристаллической фазах, соответственно, N_{Tm} концентрация тулия в исходном образце стекла, x_1 и x_2 – параметры, которые характеризуют относительное содержание ионов тулия в стеклянной и кристаллической фазах в прозрачной области образца. Тогда часть ионов туллия x_3 , которая находится в непрозрачной части образца может быть определена как $x_3 = 1 - x_1 - x_2$. Относительное содержание ионов тулия є в кристаллической фазе в прозрачной области стекломатериала $\varepsilon = x_2/(x_1 + x_2)$. Для исследования спектров поглощения оказалась удобной линия в области 1650 нм соответствующая переходу ${}^{3}H_6 \rightarrow {}^{3}F_4$.

Параметры x_1 и x_2 определялись в процессе подгонки расчетного спектра по (1) к экспериментально определенному спектру коэффициента поглощения стекла после вторичной термообработки. Режим вторичной термообработки будет указан в следующем виде: Х/Ү, где Х – температура в градусах Цельсия, Ү – длительность термообработки в часах. Для образцов стекла с содержанием Тт₂O₃ - 0,5 мол %, как и для стекла с Tm₂O₃ - 0.1 мол % не наблюдалось изменений в спектрах поглощения при вторичной термообработке при следующих режимах: 400/3; 400/6 и 400/9. На рисунках 1 и 2 представлены примеры результатов подгонки спектров поглощения по формуле (1) для образцов стекла содержанием Тт₂O₃ - 2 мол % и 1 мол %, соответственно.

Рисунок 1 – Спектры поглощения образцов стеклокерамики с исходным содержанием Тm₂O₃ – 2 мол %. Вторичная термообработка: *a* – 400/3, *b* – 400/6

Рисунок 2 – Спектры поглощения образцов стеклокерамики с исходным содержанием Тт₂O₃ – 1 мол %. Вторичная термообработка: *a* – 400/3; *b* – 400/6

На рисунке 3 представлены результаты определения зависимости параметров x_1 , x_2 , x_3 и є от времени вторичной термообработки при 400 С°.

Рисунок 3 – Зависимости параметров x_1 , x_2 , x_3 и є от длительности вторичной термообработки: $a - \text{Tm}_2\text{O}_3 - 2 \text{ мол }$ %, $b - \text{Tm}_2\text{O}_3 - 1 \text{ мол }$ %

Как видно из представленных результатов, при увеличении времени термической обработки стекла, возрастает часть ионов тулия в кристаллической фазе, при этом возрастает и часть ионов тулия, которая сосредоточена в рассеивающих (непрозрачных) областях стекломатериала. Таким образом, нами предложен спектроскопический метод определения относительного содержания ионов тулия в стеклянной и кристаллической фазах в оксифторидных стеклокерамиках.

Литература

1. Вилейшикова Е.В. Up-конверсионная люминесценция оксифторидной стеклокерамики с нанокристаллами PbF₂:(Yb³⁺, Eu³⁺, RE³⁺) (RE = Tm, Но или Er) / Е.В. Вилейшикова, П.А. Лойко, Г.Е. Рачковская и др. // Журнал прикладной спектроскопии. – 2016. – T 83, № 5. – С. 677–685.

2. Yin J.G. Transition Intensities and Excited State Relaxation Dynamics of Tm^{3+} in $Tm:PbF_2$ Crystal / J.G. Yin, Y. Hang, X.H. He, et al // Laser Physics. – 2012. – Vol. 22, No. 3. – Pp. 609–613.

УДК 535.3

РАСЧЕТ ФАКТОРОВ ЭФФЕКТИВНОСТЕЙ ОСЛАБЛЕНИЯ, РАССЕЯНИЯ И ПОГЛОЩЕНИЯ СИСТЕМОЙ ВОДЯННЫХ КАПЕЛЬ Бобученко Д.С.

Белорусский национальный технический университет Минск, Республика Беларусь

Известно, что облака и туманы в нижних слоях состоят из мельчайших капель жидкой воды, а в верхних слоях из кристаллов водяного льда. Для дистанционного зондирования атмосферы и исследования климата и других приложений требуются точные знания ослабления, рассеяние и поглощение совокупностью сферических капель.

Факторы эффективности ослабления Q_{ext} , рассеяния Q_{sca} , поглощения Q_{abs} , и обратного рассеяния Q_b излучения системой частиц, с учетом их распределения по размерам, рассчитывались по формулам:

$$Q_{ext} = \int_0^\infty \frac{\mathcal{C}_{ext}(r)}{\pi r^2} f(r) dr, \qquad (1)$$

$$Q_{sca} = \int_0^\infty \frac{\mathcal{C}_{sca}(r)}{\pi r^2} f(r) dr, \qquad (2)$$

$$Q_{abs} = \int_0^\infty \frac{\mathcal{L}_{abs}(r)}{\pi r^2} f(r) dr, \qquad (3)$$

$$Q_b = \int_0^\infty \frac{C_b(r)}{\pi r^2} f(r) dr \,. \tag{4}$$

В этих формулах r – радиус сферической капли, f(r) – функция распределения капель по размерам, C_{ext} , C_{sca} , C_{abs} , C_{b} – сечения ослабления, рассеяния, поглощения и обратного рассеяния одной каплей.

Предполагалось, что спектр капель по размерам описывается нормальным распределением (распределения Гаусса):

$$f(r) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(r-r_0)^2}{2\sigma^2}\right\},$$
 (5)

где r_0 – математическое ожидание (среднее значение), σ – среднеквадратичное отклонение (σ^2 –дисперсия).

Сечения ослабления C_{ext} , рассеяния C_{sca} , поглощения C_{abs} , обратного рассеяния C_b излучения одной капли определялись по суммированием по рядам [1]:

$$C_{est} = \frac{2\pi}{k^2} \sum_{n=1}^{\infty} (2n+1)Re(a_n+b_n), \qquad (6)$$

$$C_{sca} = \frac{2\pi}{k^2} \sum_{n=1}^{\infty} (2n+1)(|a_n|^2 + |b_n|^2), \qquad (7)$$

$$C_{abs} = C_{est} - C_{sca},\tag{8}$$

$$C_b = \frac{\pi}{k^2} \left| \sum_{n=1}^{\infty} (2n+1)(-1)^n (a_n - b_n) \right|^2, \quad (9)$$

где $k=2\pi/\lambda$, λ – длина волны излучения. В свою очередь коэффициенты a_n , b_n в рядах определялись по формулам:

$$a_{n} = \frac{\left[\frac{D_{n}(mx)}{m} + \frac{n}{x}\right]\Psi_{n}(x) - \Psi_{n-1}(x)}{\left[\frac{D_{n}(mx)}{m} + \frac{n}{x}\right]\xi_{n}(x) - \xi_{n-1}(x)},$$
(10)
$$b_{n} = \frac{\left[mD_{n}(mx) + \frac{n}{x}\right]\Psi_{n}(x) - \Psi_{n-1}(x)}{\left[1 - \frac{1}{x}\right]\Psi_{n}(x) - \frac{1}{x}}.$$
(11)

$$b_n = \frac{m}{\left[mD_n(mx) + \frac{n}{x}\right]\xi_n(x) - \xi_{n-1}(x)}.$$
 (11)
В этих выражениях m – относительный ком-

плексный показатель преломления (m=m_r+im_{im}), x = k r - 6езразмерная величина называемая параметром дифракции, функции $\Psi_n(x), \xi_n(x) -$ Риккати-Бесселя, $D_n(y) = \frac{d}{dy} ln \Psi_n$. Для получения точных результатов, расчет D_n проводился по обратной рекурсии с удвоенной точностью:

$$D_{n-1}(y) = \frac{n}{y} - \frac{1}{D_n(y) + \frac{n}{y}},$$
 (12)

$$D_{max} = 0.0 + i0.0 \ . \tag{13}$$