ность метода  $10^{14}$ –  $10^{15}$  см<sup>-3</sup>, что по отношению к мелким примесям составляет  $10^{-4}$ –  $10^{-6}$ .

На основе разработанного метода определён энергетический спектр и параметры остаточных и радиационных дефектов в сильно легированном p-GaAs ( $E_c - 0,22$ ;  $E_c - 0,41$ ;  $E_c - 0,73$ ;  $E_v + 0,32$ ;  $E_v + 0,10$  эВ).



Рисунок 2 – ВАХ и её вторая производная диода на основе сильно легированного GaAs при T = 77 К (стрелками указаны положения максимумов избыточного тока)



Рисунок 3 – ВАХ и её вторая производная диода на основе сильно легированного GaAs, облученного быстрыми электронами с энергией 30МэВ интегральным потоком 6 · 10<sup>16</sup> см<sup>-2</sup> (T = 77 K)

Концентрация технологических дефектов в зависимости от концентрации мелкой примеси изменяется в интервале  $10^{15}-10^{17}$  см<sup>2</sup>, а величина сечения захвата электронов в интервале  $10^{-15}-10^{-17}$  см<sup>2</sup>. Экспериментальные кривые второй производной ВАХ могут быть хорошо объяснены с помощью предложенной модели.

# УДК 621.382 ЗАРЯДОЧУВСТВИТЕЛЬНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ПОВЕРХНОСТНОЙ ФОТО-ЭДС Микитевич В.А., Жарин А.Л.

### Белорусский национальный технический университет Минск, Республика Беларусь

На этапе производства полупроводниковой микроэлектроники возникает необходимость измерения параметров полупроводниковых пластин. Существующие контактные методы измерения оказывают разрушающее воздействие на исследуемую поверхность, что приводит к уменьшению выхода годных изделий. Поэтому в последнее время все шире применяются бесконтактные зарядочувствительных методы измерения. Методы измерения контактной разности потенциалов (КРП) позволяют косвенно судить о наличии различных дефектов, неоднородности поверхности и т.п. Однако КРП сильно зависит от множества различных факторов, что затрудняет определение корреляции с конкретными физическими величинами. Другой характеристикой поверхности полупроводниковой пластины является поверхностная фото-ЭДС. Существует несколько способов измерения поверхности фото-ЭДС бесконтактным методом:

1) с непрерывной сканирующей засветкой образца;

2) метод измерения вибрирующим зондом Кельвина;

3) импульсный метод;

Метод измерения с непрерывной сканирующей засветкой образца основан на измерении разности работ выхода электрона. Измерение производится за 2 этапа. На первом этапе измеряется работа выхода электрона при отсутствии освещения, на втором этапе – при непрерывном освещении лучом света. На основе полученных измерений рассчитывается поверхностная фото-ЭДС. Данный метод позволяет определять усредненное значение поверхностной фото-ЭДС по поверхности. При этом размеры области сканирования обычно составляют десятки нанометров [1].

Метод измерения вибрирующим зондом Кельвина аналогичен предыдущему методу. Отличие состоит в том, что используется вибрирующий зонд. Измерение проводится также в два этапа. Измерение также выполняется в два этапа. На первом этапе измерение производится в темноте. На втором этапе измерение производится при равномерном освещении всего образца. На основе разности полученных результатов измерений можно судить лишь о наличии фотоотклика. Такой метод измерения применяется для диэлектриков [2].

Основной недостаток вышеизложенных методов измерения – это необходимость проведения измерений за два этапа, что увеличивает время и погрешность измерений.

Импульсный метод измерения основан на измерении поверхностной фото-ЭДС при воздействии на исследуемый образец импульсным световым излучением. При этом сигнал фото-ЭДС имеет экспоненциальную форму, что затрудняет измерение времени спада в области малых уровней сигнала. Пример воздействующего и ответного сигналов представлены на рисунке 1. Основной недостаток этого метода – сложность формирования идеального прямоугольного импульса светового излучения [3]. При формировании прямоугольного импульса при помощи пикосекундного лазера большое влияние на результат измерения оказывает измерительная схема из-за наличия паразитных составляющих элементов [4].



Рисунок 1 – Реакция на воздействие прямоугольным световым сигналом:

*I* – кривая воздействующего светового излучения;
2 – кривая фото-ЭДС

Предложен метод измерения поверхностной фото-ЭДС путем воздействия модулированным световым излучением на исследуемую поверхность. Модуляция светового излучения позволяет изменять его интенсивность в широком диапазоне.

Основные преимущества модулированного сигнала:

1) возможность получать воздействующий световой сигнал различной формы, например синусоидальной;

 возможность получать измерительный сигнал различной формы;

 возможность проводить измерения в установившемся режиме, а не во время переходных процессов;

4) отсутствие высших гармоник в измерительном сигнале;

5) уменьшаются частотные требования к усилителям сигнала;

6) упрощается фильтрация измерительного сигнала.

На рисунке 2 упрощенно представлен принцип формирования светового излучения по средством широтно-импульсной модуляции (ШИМ). Управляющие импульсы представлены на графике а. На графике б представлена аппроксимированная кривая светового излучения в тех же временных координатах. Аппроксимация выполняется либо между источником сигнала и источником светового излучения (активный или пассивный фильтр), либо на поверхности исследуемого образца. Во втором случае частота ШИМ должна значительно превышать частотные свойства исследуемого образца.



Рисунок 2 – Формирование светового сигнала синусоидальной формы:

 $a - \phi$ ормирование импульсов управления источником светового излучения;  $\delta - кривая$  светового излучения

При воздействии на исследуемую поверхность синусоидальным световым излучением фото-ЭДС также будет изменяться по синусоидальному закону. В первый момент времени вид воздействующего сигнала и кривой фото-ЭДС представлены на рисунке 3.

После прохождения нескольких периодов воздействующего светового сигнала завершаются переходные процессы и работа продолжается в установившемся режиме. При этом информативной становится основная гармоника измерительного сигнала. Появление высших гармоник связано с возникновением наводок и шумов. Выделение основной гармоники может осуществляться при помощи фильтра. В качестве фильтров используются активные аналоговые или цифровые фильтры.



Рисунок 3 – Реакция на воздействие синусоидальным световым сигналом:

*I* – кривая воздействующего светового излучения;
2 – кривая фото-ЭДС

Усиление синусоидального сигнала на одной частоты позволяет в значительной степени упростить построение входного усилителя. В отличие от широкополосных усилителей, узкополосные усилители обладают рядом преимуществ:

1) малые нелинейные искажения;

2) не требуется частотная коррекция;

3) нет жестких требований для скорости нарастания сигнала усилителя.

Из вышесказанного следует, что при построении входного усилителя можно использовать низкочастотные усилители. Как правило, низкочастотные усилители обладают большим коэффициентом усиления и малыми входными токами.

Таким образом предложенный метод измерения поверхностной фото-ЭДС обладает рядом преимуществ, которые позволяют в значительной степени упростить конструкцию измерительной системы, а также улучшить точность и достоверность результатов измерения.

## Литература

1. Kevin O. A self-tracking method for local surfacephotovoltage measurements on semiconducting surfaces / O. Kevin, S. Speller, I. Barke // J. Phys. B: At. Mol. Opt. Phys. – 2017. 50 204004

2. Анализ распределения электрофизических и фотоэлектрических свойств нанокомпозитных полимеров модернизированным зондом Кельвина / К.В. Пантелеев, А.В. Кравцевич, И.А. Ровба, В.И. Лысенко, Р.И. Воробей, О.К. Гусев, А.Л. Жарин // Приборы и методы измерений. – 2017. – Т. 8, № 4. – С. 386–397.

3. Podshivalov, V.N. Determination of the diffusion length of charge minority carriers using digital oscillography of surface photovoltage / V.N. Podshivalov // Russ Microelectron. – 2010, vol. 39 p. 34–41.

4. Dittrich Th. Extraction of source functions of surface photovoltage transients at very short times / Th. Dittrich, O. Garcia Vera, S. Fengler, S. Pineda, S. Bönisch // Review of Scientific Instruments. – 2019. – Vol. 90

#### УДК 535-3: 535.314

## ФОРМИРОВАНИЕ РЕНТГЕНОВСКИХ И ГАММА-ПУЧКОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИКАПИЛЛЯРНЫХ СТРУКТУР Дудчик Ю.И.

## Институт прикладных физических проблем имени А.Н. Севченко БГУ Минск, Республика Беларусь

Пучки рентгеновского и гамма-излучения широко используются в науке, технике и медицине. Для их формирования используются различные элементы рентгеновской оптики, такие как зонные пластинки, многоэлементные преломляющие рентгеновские линзы, поликапиллярные линзы Кумахова, конические и параболические монокапилляры, многослойные зеркала, зеркала скользящего падения. Каждый из указанных элементов имеет свой собственный энергетический диапазон использования, однако для фотонов с энергией больше 100 кэВ эффективность указанных элементов падает. Что касается гамма-лучей с энергией фотонов от 100 кэВ до 1 МэВ, то недавно в [1] было показано, что показатель преломления для гамма-лучей с энергией около 1 МэВ больше единицы, что не соответствовало сложившимся представления. Предполагалось, что это открытие станет основой для создания нового вида гамма-оптики. Однако позже указанные авторы признали возможные ошибки в своей работе и сошлись во мнении, что показатель преломления для гамма-излучения меньше единицы, что является общепринятым. Следовательно, коллиматор, по-видимому, является единственным средством контроля гаммаизлучения. Поскольку коллиматор характеризуется низкой светосилой, то разработка принципов и устройств для управления пучками гаммаизлучения высоких энергий представляется многообещающей и актуальной.

В данной работе предлагается использовать многослойные структуры и поликапиллярные стеклянные структуры в качестве источников вторичного гамма-излучения для увеличения интенсивности гамма-излучения на объекте. Идея состоит в том, что пропускать первичный пучок гамма-излучения от рентгеновской трубки или ускорителя электронов, через слоистую структуру: пучок будет испытывать рассеяние на электронной подсистеме структуры за счет эффекта Комптона, при этом часть пучка вторичного излучения в направлении каналов структуры образует дополнительный гамма-луч, который увеличит интенсивность излучения в заданном направлении.

На рисунке 1 показана структура, состоящая из плоских слоев материала с атомным номером Z (обозначен как 4), расположенных на расстоянии b друг от друга. Толщина отдельного слоя 4 равна a. Гамма-лучи из рентгеновской трубки или ускорителя пересекает слои структуры под углом  $\varphi$  и рассеиваются на электронной подсистеме атомов слоя 4. Лучи, рассеянные под углом  $\theta$ , попадают в каналы структуры и образуют направленный пучок гамма-лучей, где  $\theta$  – угол между рассеянным фотоном и первичным пучком.



Рисунок 1 – Слоистая структура для генерация гамма-излучения

Интенсивность вторичного комптоновского гамма-пучка зависит от пропускания структуры в направлении угла *а*, где *а* – угол между рассеян-