УДК 621.7,620.186 СТРУКТУРА И УДЕЛЬНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ АЛМАЗОПОДОБНЫХ ПЛЕНОК Лапицкая В.А.^{1,2}, Кузнецова Т.А.^{1,2}, Хабарова А.В.¹, Трухан Р.Э.¹, Чижик С.А.^{1,2}, Торская Е.В.³

¹ Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси Минск, Республика Беларусь ²Белорусский национальный технический университет Минск, Республика Беларусь ³Институтом проблем механики имени А.Ю. Ишлинского РАН Москва, Российская Федерация

Широкое распространение покрытий на основе углерода объясняется как их свойствами, такими как химическая инертность и биосовместимость, так и возможностью за счет выбора технологии нанесения и различного типа добавок обеспечивать необходимые механические свойства и степень сцепления с подложкой. В области трибологии используются как износостойкие алмазоподобные (DLC) покрытия, так и покрытия на основе графита, обеспечивающие низкие значения коэффициента трения в паре с различными контртелами в условиях сухого трения.

Целью работы являлось изучение морфологии и удельной поверхностной энергии алмазоподобных пленок методом атомно-силовой микроскопии. Известна важность адгезионных сил на трибологических поверхностях микроустройств [1].

Образцы алмазоподобных (DLC) покрытий наносили на сталь марки ШХ15 методами лазерной абляции (Pulse laser deposition, PLD) и осаждением импульсным дуговым разрядом (Laser arc PVD). Перед нанесением алмазоподобного покрытия для лучшей адгезии у образцов с толщиной покрытия 300 и 500 нм создавали титановый подслой толщиной 800 нм. У образца с толщиной алмазоподобного покрытия 100 нм подслой отсутствует, также как и у образца с покрытием TiN. При осаждении TiN до толщины 2,5–3 мкм в камеру постепенно добавлялся азот до 200 см³/мин с шагом 1 см³/с.

Морфологию поверхности, шероховатость и количественное определение удельной поверхностной энергии алмазоподобных покрытий проводили на атомно-силовом микроскопе Dimension FastScan компании Bruker с использованием стандартных кремниевых кантилеверов типа NSC-11 (производство MicroMash, Эстония) с радиусом закругления острия 10 нм, с жесткостью консоли 4,8 Н/м в режиме PeakForce QNM (Quantitative Nanoscale Mechanical Mapping). Для данных твердых покрытий режим QNM при использовании кремниевого зонда позволяет оценить распределение адгезионных сил по поверхности и, таким образом, лучше выявить различные фазы и границы зерен.

Удельная поверхностная энергия (работа адгезии) определялась согласно теории Джонсона-Кендалла-Робертса для упругих адгезионных контактов по формуле:

$\gamma = 2Fag/3(2\pi R), \qquad (1)$

где Faд – сила адгезионного взаимодействия между наконечником зонда и поверхностью, H; R – радиус наконечника зонда, м [2].

Параметры шероховатости поверхности описывают отклонения реальных поверхностей от номинально гладких. Реальная поверхность состоит из чередующихся ориентированных или беспорядочно расположенных выступов или впадин. Атомно-силовая микроскопия является одним из основных методов измерения шероховатости тонких гладких покрытий.

Обычно считается, что наиболее предпочтительным параметром, характеризующим шероховатость, является среднее арифметическое отклонение профиля Ra, широкое использование которого объясняется тем, что он дает достаточную информацию не только о высоте, но и о профиле неровностей. При неразрушающем контроле покрытия, острие зонда устанавливается на его поверхность и контактирует только с наибольшими выступами шероховатости, вследствие чего целесообразнее оценивать шероховатость по значению наибольшей неровности профиля Rz.

Значения шероховатости, силы алгезии и удельной поверхностной энергии определялись на полях сканирования различного размера от 1×1 до 50×50 мкм.

На рисунке 1 представлена топография алмазоподобных покрытий толщиной 100 и 500 нм на поле 5х5 мкм². Поверхность алмазоподобных покрытий имеет равномерно распределенные частицы диаметром 200 нм с плотностью 25 частиц/мкм² и более крупные частицы диаметром 600 нм с плотностью 1 частица/мкм², что хорошо согласуется с данными работы [3].

Микроструктура поверхности образца TiN на поле 5×5 мкм имеет рассеянные по поверхности частицы вытянутой формы и небольшие скопления микрочастиц. На поле 20×20 мкм покрытие TiN не имеет малых округлых частиц на поверхности в отличие от алмазоподобных покрытий. На всех покрытиях в режиме адгезии частицы имеют меньшее значение силы адгезии по сравнению с основной частью покрытия.

По результатам определения Faд, Rz, γ установлено, что на малых полях до 3×3 мкм все по-

казатели, с увеличением толщины алмазоподобного покрытия, снижаются. При увеличении площади исследования от 5×5 мкм до 50×50 мкм наивысшие показатели имеет алмазоподобное покрытие с толщиной 300 нм, а покрытия с толщиной 100 и 500 нм по значениям практически совпадают.

б

Рисунок 1 – АСМ-изображения (5х5 мкм²) поверхности алмазоподобных покрытий различной толщины: *a* – 100 нм, *б* – 500 нм

Покрытие TiN имеет минимальные значения Faд, Rz и γ на самом малом исследуемом поле 1×1 мкм, несущественно изменяющиеся значения на полях от 2×2 мкм до 10×10 мкм и увеличение показателей на полях от 20×20 мкм до 50×50 мкм. Однако, в отличие от алмазоподобных покрытий, шероховатость Rz образца TiN на всех исследуемых полях имеет значительно меньшие значения по сравнению с алмазоподобнами покрытиями.

Таким образом работа адгезии γ, необходимая для разрыва контакта, на разных полях исследуемых поверхностей, составила: для образца TiN и DLC 300 нм от 0,6 до 1,3 H/м; для образца DLC 100 нм от 0,3 до 1,3 H/м; для образца DLC 500 нм от 0,3 до 0,8 H/м. Таблица 1 – Значения силы адгезии, удельной поверхностной энергии и шероховатости алмазополобных пленок и TiN

5х5 мкм	F _{ад} ,	Ra,	Rq,	Rz,	γ,
	нН	HM	HM	HM	H/M
TiN	82	4,9	8,4	9,4	0,9
DLC 100 нм	69	15,7	21,7	21,2	0,7
DLC 300 нм	79	14,1	23,9	29,7	0,8
DLC 500 нм	58	14,5	19,6	20,0	0,6

Заключение.

Исследована морфология поверхности алмазоподобных покрытий. Проведено количественное исследование сил адгезии Fag и удельной поверхностной энергии у на поверхности TiN покрытия и алмазоподобных покрытий (DLC) толщиной 100, 300 и 500 нм методом атомносиловой микроскопии на полях сканирования от 1×1 до 50×50 мкм. Наименьшая удельная поверхностная энергия ү у покрытия DLC толщиной 500 нм. На малых полях до 3×3 мкм Fag и γ с увеличением толщины алмазоподобного покрытия снижаются. При увеличении площади исследования до 50×50 мкм максимальные значения Faд и ү имеет алмазоподобное покрытие с толщиной 300 нм, а покрытия с толщиной 100 и 500 нм по значениям практически совпадают.

Благодарности. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (Ф20Р-217)

Литература

1. S. Chizhik, Micro and Nanoscale Wear Studies of HDD Slide Bearings By Atomic Force Microscopy / S. Chizhik, A. Khudoley, T. Kuznetsova, K. Wierzcholski, A. Miszczak // 2010, Proceedings of Methodological Aspects of Scanning Probe Microscopy, Heat and Mass Transfer Institute of NAS, pp. 247–252.

2. Т.А. Кузнецова, Микрозонды для определения силы адгезии и удельной поверхностной энергии методом атомно-силовой микроскопии /ТА Кузнецова, НВ Чижик, ТИ Ширяева // 2013, Приборы и методы измерений, 2013. № 1 (6). – С. 41–45.

3. Углов В.В., Взаимосвязь микроструктурного состояния поверхности и механических свойств углеродных и металл-углеродных покрытий, формируемых плазмо-усиленным химическим вакуумным осаждением / Углов В.В и др. //Перспективные материалы, 2003. – № 6. – С. 5–11.