УДК 666.762.93-492.2

ОПТИМИЗАЦИЯ ПРОЧНОСТНЫХ СВОЙСТВ НИТРИДНОЙ ГОРЯЧЕПРЕССОВАННОЙ КЕРАМИКИ, ПОЛУЧЕННОЙ ИЗ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ

Е.С. ГОЛУБЦОВА, д-р техн. наук Белорусский национальный технически университет, Н.Б. КАЛЕДИНА

Белорусский государственный технологический университет

В данной работе выполнен статистический анализ дефектов структуры горячепрессованной керамики на основе нитрида кремния в зависимости от характеристик исходных порошков и особенностей технологии получения керамических изделий.

Ключевые слова: ультрадисперсные керамические порошки, нитрид кремния, статистические методы исследования, предел прочности на изгиб, горячее прессование.

OPTIMIZATION OF THE STRENGTH PROPERTIES OF NITRIDE HOT-PRESSED CERAMICS OBTAINED FROM ULTRA DISPERSED POWDERS

E.S. GOLOUBTSOVA, Dr. of Engineering Sciences Belarusian National Technical University N.B. KALEDZINA Belarusian State Technological University

It is performed a statistical analysis of defects in the structure of hot-pressed silicon nitride ceramics, depending on the characteristics of the initial powders and the features of technology production ceramics.

Keywords: ultrafine ceramic powders, silicon nitride, statistical research methods, ultimate bending strength, hot pressing.

В значительной мере однородность структуры керамики определяется характеристиками исходных порошков. Неоднородности по фазовому, химическому составам в массе порошка могут привести к образованию нежелательных дефектов в структуре керамики, которые снижают прочность и эксплуатационные свойства конечных изделий.

При исследовании в качестве исходного сырья применяли ультрадисперсные керамические порошки (УДКП) состава Si₃N₄ – (8–10) масс.% Y₂O₃, синтезированные в условиях низкотемпературной плазмы. Удельная поверхность, определенная методом БЭТ составила 55±15 м²/г. Фазовый состав исходной керамики – β -Si₃N₄, α -Si₃N₄, Si. Керамику из УДКП получали в графитовых прессформах в среде азота на установках, которые обеспечили усилие прессования 0,04 и 0,12 MH, нагрев осуществляли до 1850–1900 °С. Предел прочности при изгибе определяли методом трехточечного изгиба образцов размерами 7×7×70 мм. Для определения размеров и морфологии дефектов структуры использовали «Neophot-30»; тонкую структуру дефекта наблюдали с помощью электронного сканирующего микроскопа.

Для анализа результатов экспериментов использовались статистические методы исследования [1].

Широкий диапазон зернового состава порошков кремния, которые применяются при плазмохимическом синтезе, определяет большой разброс размеров частиц в композиционных порошках и, соответственно, неоднородность структуры керамики. Для сужения зернового состава композиционных порошков в ходе их синтеза применяли специально узкие фракции кремния с размером частиц 5–20 и 60–100 мкм, полагая, что использование тонкой фракции 5–20 мкм обеспечивает наиболее благоприятные условия для испарения частиц в плазмохимическом реакторе и практически исключает попадание в продукт синтеза крупных частиц.

Классификацию композиционных порошков осуществляли на воздушном центробежном классификаторе. Проводили как однократную, так и многократную классификацию.

Ультрадисперсную шихту усредняли и дегазировали в полиэтиленовых контейнерах в бензине с корундовыми шарами на валковой мельнице.

Для исследования влияния температуры испытания и зернового состава порошков на предел прочности при изгибе был проведен эксперимент по плану 2×4, где 2 – два уровня температуры испытаний (20 и 1400 °C), а 4 – четыре уровня размера частиц после одно-

кратной, многократной классификации, укрупнения и гомогенизации в бензине и из порошков Si узкой фракции 5–20 мкм.

В качестве параметра оптимизации (функции отклика y_1) был выбран предел прочности на изгиб ζ_u , МПа, а в качестве факторов (x_1 и x_2) – температура испытаний (x_1) и вид технологического приема (x_2): ($x_2 = -1$ – однократная классификация; $x_2 = -1/3$ – многократная классификация; $x_2 = +1/3$ – усреднение и гомогенизация в бензине и $x_2 = +1$ – исходная фракция Si, 5–20 мкм).

Ошибка воспроизводимости опытов ($S_1 = 27 \text{ МПа}$) была определена ранее по результатам 7 параллельных опытов, проведенных при $x_1 = -1$ и $x_2 = -1$, т. е. когда оба фактора были на нижних уровнях. Во избежание влияния систематических ошибок опыты проводили в случайном порядке.

Матрица плана 2×4 и результаты эксперимента приведены в таблице 1.

N⁰	x_1	x_2	x_1x_2	x_{2}^{2}	$y_1 = \sigma_u$, MПa	$y_2 = \sigma_u$, МПа
1	_	_	+	+	480	450
2	_	-1/3	+1/3	1/9	520	490
3	_	+1/3	-1/3	1/9	655	625
4	_	_	_	+	796	766
5	+	_	_	+	376	346
6	+	-1/3	-1/3	1/9	360	330
7	+	+1/3	+1/3	1/9	465	435
8	+	—	+	+	690	660
	(1Y)	(2Y)	(12Y)	(22 <i>Y</i>)	(0Y)	

Таблица 1 – Матрица плана 2×4 и результаты эксперимента

В этой таблице \mathbb{N}_{2} – номер опыта (u = 1, 2...8); x_1 и x_2 – кодированные уровни факторов (температура испытания и виды технологического приема); y_1 – среднее значение σ_u , y_2 – минимальное значение σ_u в u-ом опыте.

Коэффициенты уравнения регрессии определяли по формулам:

$$b_0 = A_0(0Y) - A_{01}(11Y) - A_{02}(22Y); \tag{1}$$

$$b_1 = A_1(1Y);$$
 (2)

$$b_2 = A_2(2Y);$$
 (3)

$$b_{12} = A_{12}(12Y); \tag{4}$$

$$b_{11} = A_{11}(11Y) - A_{01}(0Y); \tag{5}$$

$$b_{22} = A_{22}(22Y) - A_{02}(0Y), \tag{6}$$

где A_0 , A_{01} , A_{02} ... A_{22} – коэффициенты, взятые из таблицы 219 [1]. В нашем случае $A_0 = 0,32031$; $A_{01} = 0$; $A_{02} = 0,35156$; $A_1 = 0,125$; $A_2 = 0,255$; $A_{12} = 0,225$; $A_{11} = 0$; $A_{22} = 0,63221$; (0Y) – сумма значений столбца y_i , а (1Y); (2Y)...(22Y) – алгебраические суммы произведений столбца y_i на соответствующие столбцы факторов (см. таблицу 1).

После расчетов значений коэффициентов уравнения $b_0, b_1, b_2 \dots b_{22}$ и проверки их значимости путем сравнения абсолютных значений этих коэффициентов с доверительным интервалом получена адекватная модель в виде полинома второго порядка:

$$y_1 = \sigma_u = 489 - 70x_1 + 181x_2 + 96x_2^2.$$
⁽⁷⁾

Из этого уравнения видно, что наибольшее влияние на предел прочности на изгиб (y_1) оказывает x_2 (технологический прием).

Максимальная величина $\hat{y}_1 = 800$ МПа получена при $x_1 = -1$ (t = 20 °C) и $x_2 = +1$ (исходная фракция Si – 5–20 мкм).

Казалось бы, многократная классификация ($x_2 = -1/3$) позволяет также повысить однородность композиционных порошков по зерновому составу посредством отделения наиболее крупных частиц кремния (Si). Однако при этом происходит дополнительное насыщение ультрадисперсного порошка кислородом [2], что приводит к образованию в керамике фаз невысокой тугоплавкости (Si₂ON₂, *Y*SiO₂N), находящихся в стеклообразном состоянии, и к снижению, вследствие этого, ее прочностных свойств при повышенных температурах.

Склонность порошка к агрегированию и окислению приводит к формированию при горячем прессовании неоднородной структуры керамики, что предопределяет в свою очередь большой разброс значений прочности (коэффициент ковариации больше 50 %). Основными источниками разрушения в этом случае являются локальные скопления стеклофазы и крупнокристаллических включений вторичных фаз.

Применение для синтеза порошка узкой фракции кремния 5–20 мкм ($x_2 = +1$) позволило существенно снизить содержание крупных частиц в порошке без ухудшения фазового состава и повысить его однородность. Значительное увеличение доли частиц менее 5 мкм позволяет сузить распределение по размерам зерен в структуре керамики, что является важным условием достижения высоких и, главное, воспроизводимых физико-механических свойств конструкционной керамики.

В следующей серии опытов было установлено влияние этих же факторов (температуры и технологического приема) на предел прочности при изгибе (y_2) с учетом рассеяния этого параметра оптимизации. В каждом опыте принималось минимальное значение σ_u , и по полученным результатам после их статистической обработки по указанной выше методике получена адекватная модель

$$y_2 = \sigma_{u \min} = 459 - 70x_1 + 181x_2 + 96x_2^2, \qquad (8)$$

показывающая, что и в этом случае роль и характер влияния факторов остается прежним, снижается лишь величина b_0 (с 489 до 459).

Далее было исследовано влияние размера дефекта (x_3) на величину разрушающего напряжения (y_3) . Для каждой партии керамических образцов, изготовленных в соответствии с указанными технологическими приемами, измерены критические дефекты и разрушающие напряжения. Эксперимент проводился по плану 3×4, где 3 – три уровня размера дефекта (40, 120 и 200 мкм), а 4 – четыре вида технологического приема $(x_4 = +1 - узкая фракция 5-20 мкм; x_4 = +1/3 – после классификации порошков; x_4 = -1/3 – из порошков Si фракции 60–100 мкм и x_4 = -1 – зерновой состав (после усреднения и дегазации). Ошибка воспроизводимости опытов составила 26 МПа (S₃ = 26).$

Матрица плана 3×4 и результаты эксперимента приведены в таблице 2.

В этой таблице *x*₃ и *x*₄ – кодированные уровни размера дефектов и вида технологического приема.

№	<i>x</i> ₃	x_4	$x_3 x_4$	x_{3}^{2}	x_{4}^{2}	$y_3 = \sigma_G$, MПa
1	_	_	+	+	+	540
2	-	-1/3	+1/3	+	+1/9	600
3	_	+1/3	-1/3	+	+1/9	760
4	-	+	_	+	+	820
5	0	_	0	0	+	330
6	0	-1/3	0	0	+1/9	420
7	0	+1/3	0	0	+1/9	520
8	0	+	0	0	+	620
9	+	_	—	+	+	310
10	+	-1/3	-1/3	+	+1/9	380
11	+	+1/3	+1/3	+	+1/9	460
12	+	+	+	+	+	560
	(3Y)	(4Y)	(34 <i>Y</i>)	(33 <i>Y</i>)	(44Y)	

Таблица 2 – Матрица плана 3×4

После статистической обработки результатов эксперимента и проверки значимости коэффициентов уравнения получена адекватная модель:

$$y_3 = \sigma_G = 468 - 126x_3 + 140x_4 + 81x_3^2 \,. \tag{9}$$

Анализ этого уравнения показывает, что в этом случае наибольшее влияние на разрушающее напряжение оказывает размер дефекта (x_3), влияние вида технологического приема (x_4) меньше.

Параболический вид зависимости разрушающего напряжения от размера дефекта (x_3) указывает на то, что повышение величины этого напряжения при фиксированных размерах дефектов связано с ростом трещиностойкости в соответствии с уравнением Гриффитса:

$$\sigma_G = \frac{K_{1c}}{\sqrt{\pi \cdot a}},\tag{10}$$

где $\sigma_{\rm G}$ – разрушающее напряжение; *a* – размер дефекта; K_{1c} – коэффициент вязкости разрушения. Различия в трещиностойкости керамики разных партий обусловлены особенностями структуры, в частности размерами и морфологией зерен.

Самый высокий уровень прочности ($y_3 = 820$ МПа) при сопоставимых размерах дефектов (40 мкм) показала горячепрессованная керамика из композиционного порошка с наиболее узким зерновым составом, синтезированного из исходного кремния фракции 5–20 мкм ($x_4 = +1$). В этом случае структура наиболее однородная, содержит большое количество вытянутых зерен длиной 0,5–2,5 мкм, имеющих в поперечнике размер 0,2–0,4 мкм.

Статистическое исследование влияния размера частиц порошка и разрушающих дефектов в горячепрессованной керамике из ультрадисперсных порошков позволило оптимизировать технологию получения нитридной керамики и добиться резкого сокращения размеров и количества дефектов структуры, роста разрушающего напряжения.

Список литературы

1. Вознесенский, В.А. Статистические методы планирования экспериментов в технико-экономических исследованиях / В.А. Вознесенский. – М.: Финансы и статистика, 1981. – 264 с.

2. Ткачева, И.И. Анализ дефектов микроструктуры горячепрессованного нитрида кремния в зависимости от технологических характеристик исходного сырья / И.И. Ткачева, В.И. Землянская, Ю.Ф. Тюриков // Конструкции и технология получения изделий из неметаллических материалов: XI Всесоюзн. конф., Обнинск, 1988: Тез. докл. – Обнинск, 1988.– С.46–47.

References

1. Voznesenskij, V.A. *Statisticheskie metody planirovaniya eksperimentov v tekhniko-ekonomicheskih issledovaniyah* [Statistical methods for planning experiments in feasibility studies] / V.A. Voznesenskij. – Moscow: Finansy i statistika Publ., 1981. – 264 p.

2. Tkacheva, I.I. Analiz defektov mikrostruktury goryachepressovannogo nitrida kremniya v zavisimosti ot tekhnologicheskih harakteristik iskhodnogo syr'ya [Analysis of defects in the microstructure of hotpressed silicon nitride depending on the technological characteristics of the feedstock] / I.I. Tkacheva, V.I. Zemlyanskaya, Yu.F. Tyurikov // Konstrukcii i tekhnologiya polucheniya izdelij iz nemetallicheskih materialov: = Designs and technology for producing products from non-metallic materials: XI Vsesoyuzn. konf., Obninsk = XI All-Union Scientific and Technical Conference., Obninsk, 1988: Abstracts. Obninsk, 1988. – P. 46–47.

Поступила 20.05.2020 Received 20.05.2020