ОЦЕНИВАНИЕ РАСЧЕТНЫХ МОДЕЛЕЙ СОПРОТИВЛЕНИЯ СРЕЗУ БАЛОЧНЫХ ЭЛЕМЕНТОВ БЕЗ ПОПЕРЕЧНОГО АРМИРОВАНИЯ, ВКЛЮЧЕННЫХ В РАЗЛИЧНЫЕ НОРМЫ ПРОЕКТИРОВАНИЯ

ТУР В. В., ДЕРЕЧЕННИК С. С., ВОРОБЕЙ А. П. Брестский государственный технический университет Брест, Беларусь

В статье представлены результаты оценок на фоне опытных данных расчетных моделей сопротивления, включенные в действующие и разрабатываемые нормы проектирования железобетонных конструкций.

Введение. Как показано в [10], применение Еврокодов позволяет выработать общее понимание проблемы проектирования и обеспечивает, с одной стороны, разработку гармонизированных проектных стратегий для стран Европы, а с другой – открывает широкие возможности для международного сотрудничества.

С притоком нового поколения инженеров в странах объединенной Европы и с учетом того, что в подавляющем большинстве стран национальные стандарты не получают дальнейшего развития (прекращено как финансирование разработок нормативных документов национального уровня, так и исследований, выполняемых для целей нормализации), в проектной практике Европы для Еврокодов практически не остается альтернативы. Но здесь, как ни странно, отсутствие альтернативы при широкой гармонизации создает серьезные проблемы. Так, согласно действовавшей стратегии в европейском нормировании – второе поколение Еврокодов (ЕС-G2) должно было введено в 2020 году. Для новых норм по железобетону такую основу составляет кодекс-образец fib Model Code 2010. Однако, нена подготовленную довольно обширную версию *fib* смотря МС 2010, разработанную взамен МС 90, новые нормы по проектированию железобетонных и предварительно напряженных конструкций (prEN 1992-1-1) так и не были приняты и внедрены в 2020 году. Судя по докладу председателя рабочей группы

TG4/TC250 по EC2 A. Muttoni, сделанному в ноябре 2019 года на 26th – Concrete Days (Чехия), введение этих норм может не состояться и к 2024 году.

Одним из наиболее дискуссионных вопросов из-за которого, посуществу, не достигнут консенсус среди научного сообщества, попрежнему остается проблема среза, включая и местный срез (продавливание). Так, по данным [11] только по результатам применения EN1992 (EC2) было собрано 1168 замечаний и комментариев, относящихся к моделям сопротивления срезу. При этом, до настоящего времени тематическая группа TG4/TC250 не может остановить свой выбор на одном из рассматриваемых вариантов модели сопротивления срезу и соответственно местному срезу.

Расчетные модели сопротивления срезу элементов без поперечного армирования. Для анализа были приняты следующие расчетные модели сопротивления срезу элементов без поперечного армирования (табл. 1):

1. Модель, принятая в ТКП EN 1992-1-1 с учетом Национального дополнения составленного к этому документу;

2. Модель *fib* Model Code 2010 (для двух уровней аппроксимации LoA I и LoA II), рекомендованная для внесения в проект нового EC2, основанная на положениях модифицированной теории полей сжатия (MCFT) и теории критической трещины среза (CSCT). Посуществу, данная модель в значительной степени стремиться приблизиться к пониманию физического феномена среза;

3. Полуэмпирическая модель, внесенная в проект prEN 1992, основанная на применении положений теории критической трещины среза (CSCT).

Еще не так давно на конференциях и семинарах различного уровня проходили страстные дебаты, в рамках которых рассматривали следующие вопросы: например, какая модель сопротивления при изгибе, срезе, продавливании является адекватной, позволяет в лучшей степени описать физическое поведение конструкции под нагрузкой, рассчитать ширину раскрытия трещины и т. д.

Расчетные модели сопротивления срезу балочных элементов без поперечного армирования, внесенные в различные нормативные документы

Название норм	Расчетные зависимости	Примечание
ТКП EN 1992-1- 1:2009 [1]	$\begin{split} V_{Rd,c} = & \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d, \\ \text{Ho he mether } V_{Rd,c} = & \left(v_{\min} + k_1 \cdot \sigma_{cp} \right) \cdot b_w \cdot d, \\ v_{\min} = & 0,035 \cdot k^{3/2} \cdot f_{ck}^{1/2} \\ \text{при } & 0,5 \cdot d \le a_v < 2 \cdot d \text{ значение } V_{Ed} \\ \text{уменьшают на коэффициент } \beta = \frac{a_v}{2 \cdot d} \\ V_{Ed} \le & 0,5 \cdot b_w \cdot d \cdot v \cdot f_{cd}, \end{split}$	$C_{Rd,c} = \frac{0,18}{\gamma_c};$ $k = 1 + \sqrt{\frac{200}{d}} \le 2,0;$ $\rho_l = \frac{A_{sl}}{b_w \cdot d} \le 0,02;$ $\nu = 0,6 \cdot \left(1 - \frac{f_{ck}}{250}\right).$
<i>fib</i> Model Code 2010 (LoA I) [5]	$V_{Rd,c} = k_v \frac{\sqrt{f_{ck}}}{\gamma_c} \cdot z \cdot b_w, \ k_v = \frac{180}{1000 + 1,25 \cdot z},$ при $d \le a_v < 2 \cdot d$ значение V_{Ed} уменьшают на коэффициент $\beta = \frac{a_v}{2 \cdot d}$	_
<i>fib</i> Model Code 2010 (LoA II) [5]	$V_{Rd,c} = k_v \frac{\sqrt{f_{ck}}}{\gamma_c} \cdot z \cdot b_w,$ $k_v = \frac{0,40}{1+1500 \cdot \varepsilon_x} \cdot \frac{1300}{1000 + k_{dg} \cdot z},$ $\varepsilon_x = \frac{1}{2 \cdot E_s \cdot A_s} \cdot \left(\frac{M_{Ed}}{z} + V_{Ed} + N_{Ed} \left(\frac{1}{2} \mp \frac{\Delta e}{z}\right)\right)$ при $d \le a_v < 2 \cdot d$ значение V_{Ed} уменьшают на коэффициент $\beta = \frac{a_v}{2 \cdot d}$	$k_{dg} = \frac{32}{16 + d_g} \ge 0,75$
prEN 1992-1-1: 2018 [6]	$\tau_{Rd,c} = \frac{V_{Rd,c}}{b_w \cdot d} = \frac{0,6}{\gamma_c} \cdot \left(100 \cdot \rho_l \cdot f_{ck} \cdot \frac{d_{dg}}{d}\right)^{1/3} \ge \tau_{Rd,c,\min},$ ГДе $\tau_{Rd,c\min} = \frac{10}{\gamma_c} \cdot \sqrt{\frac{f_{ck}}{f_{yd}} \cdot \frac{d_{dg}}{d}},$ при $d \le a_{cs} < 2 \cdot d$ значение V_{Ed} уменьшают на коэффициент $\beta = \frac{a_v}{2 \cdot d}$	$\begin{split} d_{dg} &= 16 + D_{lower} \le 40 \\ \text{при } f_{ck} \le 60 M \Pi a; \\ d_{dg} &= 16 + D_{lower} \cdot (60 / f_{ck})^2 \le 40 \\ \text{при } f_{ck} > 60 M \Pi a; \\ \rho_l &= \frac{A_{sl}}{b_w \cdot d}; \\ \text{При } a_{cs} \le 4d \\ \text{где } a_{cs} &= \left M_{Ed} / V_{Ed} \right \ge d \end{split}$

Как правило, в процессе дискуссии в качестве аргумента приводят результаты верификации предлагаемой модели на фоне опытных данных, получаемых как в собственных исследованиях, так и различными исследователями.

Коротко поясним это на примере зависимостей для расчета сопротивления срезу элементов без поперечного армирования, внесенных в *fib* MC2010 [5] и prEN 1992-1-1 [6] (см. табл. 1). Структура зависимостей такова, что в них учтена одна базисная переменная $\sqrt[3]{f_{ck}}$ или $\sqrt{f_{ck}}$, выражающая характеристическую прочность бетона при срезе, а переход к расчетным значениям выполняется путем деления полученных характеристических значений сопротивления срезу на частный коэффициент $\gamma_c = 1,5$. В этой ситуации следует говорить о том, что в идеале отношение $V_{theo} / V_{test} \cong 1$ в положении, соответствующем 5 %-ой квантили распределения отношений теоретического и опытного сопротивления, а не в коей мере, *не среднему значению* (как это принято в подавляющем большинстве работ). Очевидно, что в данном случае среднее значение должно быть *а priori* более высоким, чем 1.

Следует иметь ввиду, что определение положения 5 % квантили из отношения расчетных и опытных значений также связано с определенными проблемами. В первую очередь точность оценивания обусловлена обоснованным выбором функции распределения вероятностей по полученной эмпирической выборке. Как правило, получают резко несимметричные распределения, для которых ещё требуется соответствующим образом вычислить требуемую квантиль. В этих случаях весьма полезным может быть применение метода порядковых статистик [2], что и было использовано в нашем анализе.

При этом, несмотря на различные методы получения расчетных зависимостей, внесенных в действующий ТКП EN 1992 и проект prEN1992, последние довольно схожи как по форме записи, так и перечню базисных переменных, входящих в эти модели. Главным отличием следует считать то, что в модели prEN1992 предпринята

попытка учета масштабного фактора (через отношение $\frac{d_{dg}}{d}$).

При этом, в prEN 1992-1-1, изменено значение коэффициента $C_{Rd,c}$ и предложена другая форма записи $\tau_{Rdc\,min}$.

Некоторые проблемы, связанные с оцениванием точности расчетных моделей среза. Модели, применяемые для проверок предельных состояний среза, включенные в нормы проектирования, по-прежнему имеют эмпирический или полуэмпирический характер. Они базируются на различных типах испытаний, выполненных при различных условиях (в частности, калибровки эмпирических коэффициентов $C_{Rd,c}$).

При этом, следует иметь ввиду, что используемые для статического оценивания результаты испытаний, содержащиеся в т. н. банках данных не всегда однородны и представляют полные наборы входных характеристик, необходимых для выполнения расчетов с применением теоретических моделей. Так, например, в настоящее время собраны обширные банки данных, содержащие результаты испытаний сопротивления срезу железобетонных балок. При этом, в основном собраны результаты испытаний балок прямоугольного сечения малой высоты (до 600 мм), испытанные сосредоточенными силами, приложенными в пролете (только, около 8 % всех данных, относящихся к испытанию на срез, составляют балки, испытанные равномерно-распределенной нагрузкой). Для исключения разрушения по сечениям, нормальным к продольной оси элемента (в зоне чистого изгиба) большинство балок имели, как правило, нереально высокие для практики значения коэффициента продольного армирования ρ_l .

Безусловно, методические подходы, принятые при испытаниях, не в полной мере моделируют физическое поведение элемента при срезе (плоское напряженно-деформированное состояние).

Другая, даже более серьезная озабоченность, связана с получением эмпирических моделей сопротивления срезу на фоне наборов результатов испытаний. При этом, следует иметь ввиду, что большинство результатов испытаний, включенных в банки данных, получены на образцах, которые не являются репрезентативными для реальных конструкций, применяемых в инженерной практике, поведение которых они должны описывать. Характерным примером являются зависимости для расчета сопротивления срезу высоких элементов без поперечного армирования, включенные в действующие нормы EN1992 [1] и предлагаемые для внесения в новое поколение норм в рамках т. н. «немецкого» подхода для проверок сопротивления продавливанию, что ранее рассматривалось в наших работах [10].

Очевидно, что предложенная зависимость действительно может быть более всего пригодна для проверок предельных состояний несущей способности при локальном срезе (продавливании) сплошных плит, которые по практическим и экономическим причинам не имеют поперечного армирования.

Вместе с тем, балки без поперечного армирования фактически запрещены к применению на практике. В балочных элементах, подвергнутых действию изгибающих моментов и поперечных сил по требованию норм [1, 5–6] должно быть установлено минимальное количество поперечной арматуры, даже в случае, когда выполняется условие $V_{Rd c} \ge V_{Ed}$.

Как отмечается в [10], чувствительность плит к локальным дефектам и повреждениям (например, каверны, неуплотненные места и т. д.) значительно более низкая, чем у балок. Кроме того, испытания балок практически всегда выполняют сосредоточенными силами, приложенными в непосредственной близости к опоре (как правило, пролет среза a/d составляет от 2,0 до 6,0). При такой схеме испытаний максимальная поперечная сила совпадает с максимальным моментом, а, фактически – в плитах на опорах действует максимальная поперечная сила уменьшается до нуля в сечении с максимальным изгибающим моментом M_{Ed} при действии равномерно-распределенной нагрузки.

База данных, содержащая результаты испытаний балочных элементов без поперечного армирования. Оценивание надежности расчетных моделей среза проводили по собственной базе экспериментальных данных, в которую включены 377 балок без поперечного армирования с широким диапазоном основных исследуемых параметров. Экспериментальная база данных была составлена на основе результатов лабораторных исследований, подробно описанных в статье [8].

Диапазоны варьирования основных параметров анализируемых балочных элементов представлены в табл. 2 и 3.

Все балки, включенные в базу данных (см. табл. 2 и 3) имеют прямоугольную форму поперечного сечения, однопролетные и свободно опертые, испытаны одной или двумя сосредоточенными силами, приложенными в пролете или равномерно распределенной нагрузкой.

Таблица 2

Автор	Кол-во образцов	<i>b</i> , мм	<i>d</i> , мм	ρι, %	<i>fcm</i> , МПа	a/d	<i>V</i> _{exp} , кН
Morrow, Viest (1957)	12	305	363–375	1,24– 3,83	14,7– 45,7	2,76– 7,86	88,96– 177,9
Kim, Park (1994)	16	170-300	142–915	1,01– 4,68	53,7	3–4,5	39,34– 332,1
Collins, Kuchma (1999)	21	169–300	110–925	0,5–1,03	36–99	2,5–3,07	40–249
Kani, Huggins, Wiltkopp (1979)	32	155	135– 1097	0,5–2,84	17,7– 34,5	2,5–7	24,5– 165,1
Johnson, Ramirez (1998)	1	305	610	2,49	55,8	3,1	191,3
Elzanaty, Nilson, Slate (1986)	11	177,8	273	1–2,5	20,6– 79,2	4–6	44,81– 78,53
Mphonde, Frantz (1984)	12	152	298	2,32– 3,36	22,4– 101,8	2,5–3,6	64,6– 117,9
Islam, Pam, Kwan (1998)	10	150	205	2,02– 3,22	26,6– 83,3	2,9– 3,94	45,5– 96,9
Ahmad, Khaloo, Poveda (1986)	14	127	184–208	1,77– 6,64	60,8–67	2,7–4	44,48– 75,63
Yoon, Cook, Mitchell (1996)	3	375	655	2,8	36–87	3,23	249–327
Ahmad, Park, El- Dash (1995)	4	102–127	178– 215,9	1,04– 2,07	40,3- 89,1	3–3,7	19,79– 43,39
Bazant, Kazemi (1991)	18	38,1	40,6– 165,1	1,65	46,8	3	2,95– 10,14

Параметры балочных элементов, испытанных сосредоточенными силами в пролете

Окончание табл. 2

Автор	Кол-во образ- цов	<i>b</i> , мм	<i>d</i> , мм	ρι, %	f _{cm} , МПа	a/d	V _{exp} , кН
Thorentfeldt, Drangsholt (1990)	16	150-300	207–442	1,82– 3,23	54–97,7	3–4	56,16– 280,7
Cladera (2002)	4	200	359	2,24	49,9–87	3,01	99,69– 117,9
Adebar, Collins (1996)	6	290–360	178–278	1–3,04	46,2– 58,9	2,88– 4,49	74,3– 128
Xie, Ahmad, Yu, Nino, Chung (1994)	2	127	215,9	2,07	37,7– 98,9	3	36,68– 45,72
Salandra, Ahmad (1989)	4	101,6	171,4	1,45	52,1- 69,1	2,59– 3,63	20,02– 29,8
Kulkarni, Shah (1998)	3	102	152	1,37	41,9–45	3,5–5	19,52– 24,24
Gonzalez-Fonteboa (2002)	4	200	306	2,87– 2,93	39,65– 46,77	3,28	83,88– 100,5
Hou, Chen, Xu (2015)	3	120	146	3,25	48,85	2,06– 4,11	29,15– 94,16
Moody, Viest, Elstner, Hognestad (1954)	21	152–178	262–533	1,62– 4,25	17,3– 36,7	1,52– 3,41	51,2– 436,1
Mathey, Watstein (1963)	16	203	403	0,75– 3,05	21,9–27	1,51	180–313
Kani (1967)	17	154	132– 1097	2,58– 2,84	24,8- 31,5	1–2,5	51,4– 585,6
Papadakis (1996)	8	140	200	0,8–1,2	25	1,5–2,5	42,6– 103,8
Leonhardt, Walther (1961-1962)	8	190	274	2,04	30	1-5,83	60,3– 388,3
Van Den Berg (1962)	30	229	359	4,53	19,1– 50,3	2,76– 4,88	99,2– 177,9
Сао	3	300	1845– 1925	0,36– 1,52	27–34	2,9	224–402
Niwa	3	300–600	1000– 2000	0,14– 0,28	25,4–28	2,98	227-804
Quach	1	250	3840	0,66	43,2	3,13	342,3
Sherwood	2	300	1400	0,83	39	2,90	242-265

Автор	Кол-во образцов	<i>b</i> , мм	<i>d</i> , мм	ρ <i>ι</i> , %	<i>f_{cm}</i> , МПа	<i>L</i> , мм	V_{exp} , кН
Krefeld,	51	152,4-	239,8-	1,31-	11,2-	1829-	48,7-
Thurston (1966)	51	254	482,6	4,28	37,2	4877	636,5
Shioya (1989)	8	158– 1500	200– 3000	0,4	21,2– 28,5	2161 – 32805	36,1– 1927,5
Brown, Bayrak (2006)	1	203	406	3,07	26,9	2439	336,7
Stanik, Bentz, Collins (2007)	3	113-300	230–617	0,76– 1,15	31,3– 35,8	1007 – 5815	64,1– 255,5
Smith (1970)	3	150	200	2,01	28– 36,2	2452– 3664	50,5– 59
de Cossio, Seiss (1960)	6	152	252– 276	1,01– 1,35	19,2– 41,2	1674– 2795	59,9 – 135

Параметры балочных элементов, испытанные равномерно распределенной нагрузкой

Методика и результаты оценивания. Оценивание подвергали случайные выборки, составленные из отношений V_{theo} / V_{test}, полученных с использованием моделей, приведенных в табл. 1. Учитывая то обстоятельство, что сопротивление срезу зависит, главным образом, от вариации прочности бетона при сжатии $\sqrt{f_{ck}}$, проверяли декларированное разработчиками требования, в соответствии с которым 5 %-квантиль распределения отношения V_{theo} / V_{test} должна быть близка к единице. При этом, на первом этапе для выборок N = 35 результатов устанавливали подходящую функцию распревероятности с использованием теста Колмогоровалеления Смирнова, а затем для выбранного распределения вычисляли значение 5 %-квантили статистического распределения отношения V_{theo} / V_{test}. Дополнительно, 5 %-квантиль статистического распределения V_{theo} / V_{test} вычисляли с использованием метода порядковых статистик, подробно изложенного в работах [2, 4].

Метод порядковых статистик позволяет вычислить квантиль заданного порядка не только без необходимости определения функции распределения плотности вероятности, но и для заданной обеспеченности ($\gamma = 0.5$; 0,75; 0,9). Результаты расчетов 5 %-квантилей как с применением полученных эмпирических распределений, так и по методу порядковых статистик приведены в табл. 4.

Таблица 4

Результаты расчетов 5 %-квантили распределения отношения сопротивлений срезу V_{theo} / V_{test} по различным моделям

	Значение 5%-квантили распределения отношения V _{theo} /V _{exp}					
Расчетная модель	По эмпирическому По м			етоду порядковых		
	распределению			статистик		
	Функция	Значение	$\gamma = 0.5$	$\gamma = 0,75$	$\gamma = 0.9$	
Балочные элементы,	нагружен	ные распредел	тенной нагр	узкой при	L/d < 10,0	
Model Code 2010	G	0.146	0.142	0.125	0 122	
(LoA I)	U	0,140	0,145	0,155	0,122	
Model Code 2010	IN	0 338	0 325	0.307	0 276	
(LoA II)	LIN	0,550	0,525	0,507	0,270	
prEN 1992-1-1	N	0,353	0,354	0,334	0,301	
EN 1992-1-1	N	0,208	0,205	0,194	0,174	
Балочные элементы,	нагружен	ные распредел	тенной нагр	узкой при	$L/d \ge 10,0$	
Model Code 2010	IN	0.248	0.200	0.283	0.256	
(LoA I)	LIN	0,248	0,299	0,285	0,230	
Model Code 2010	G	0.659	0.701	0.673	0.625	
(LoA II)	U	0,057	0,701	0,075	0,025	
prEN 1992-1-1	LN	0,824	0,838	0,834	0,826	
EN 1992-1-1	G	0,501	0,563	0,546	0,517	
Балочные элементы,	нагружен	ные сосредото	оченной на	грузкой при	a/d < 2,0	
Model Code 2010	G	0.144	0.144	0.142	0.120	
(LoA I)	U	0,144	0,144	0,142	0,139	
Model Code 2010	C	0.250	0.220	0.224	0.225	
(LoA II)	U	0,550	0,339	0,554	0,323	
prEN 1992-1-1	N	0,375	0,381	0,371	0,353	
EN 1992-1-1	Ν	0,307	0,303	0,299	0,293	
Балочные элементы,	нагружен	ные сосредото	оченной на	грузкой при	$a/d \ge 2,0$	
Model Code 2010	IN	0.222	0.291	0.212	0.255	
(LoA I)	LIN	0,323	0,381	0,313	0,255	
Model Code 2010	N	0.560	0.673	0.650	0.620	
(LoA II)	11	0,500	0,075	0,030	0,039	
prEN 1992-1-1	N	0,628	0,749	0,689	0,622	
EN 1992-1-1	LN	0,614	0,711	0,686	0,653	

Примечание: LN – логнормальное распределение; N – нормальное распределение; G – распределение Гумбеля.

Как видно из результатов расчетов, приведенных в табл. 4 для различных случаев нагружения опытных балок, включая нагруженные равномерно распределенной нагрузкой гибких и жестких балок (L/d < 10) практически ни одна из проанализированных моделей не 5 %-квантили ожидаемого лает в значения отношения $V_{theo} / V_{test} \simeq 1,0$, что было декларировано в работе [9]. Наиболее близкие к единице значения отношения V_{theo} / V_{test} дает расчетная модель prEN 1992-1-1 для гибких балок ($L/d \ge 10$), загруженных равномерно-распределенной нагрузкой (0,824 – при эмпирического *N*-распределения и 0,826 при оценивании по методу порядковых статистик $\gamma = 90$). Если опираться на полученные результаты можно сделать вывод о том, что практически все проанализированные модели дают довольно существенные запасы (в частности балки при малых пролетах среза a/d < 2,0 и жестких балок L/d < 10 сопротивление срезу занижается до 7 раз!). Возникает закономерный вопрос: чем это можно объяснить? Является полученный результат случайным или эмпирические коэффициенты в моделях специально подобраны таким образом? Эти вопросы требуют дополнительного анализа с учетом обозначенных ранее погрешностей, связанных с оцениванием, начиная с формирования достоверных выборок опытных данных.

Вместе с тем, некоторые предварительные замечания могут быть сделаны. Согласно prEN1992 модель сопротивления срезу имеет вид:

$$\tau_{Rd,c} = \frac{0.6}{\gamma_c} \cdot \left(100 \cdot \rho_l \cdot f_{ck} \cdot \frac{d_{dg}}{d} \right)^{1/3} \ge \tau_{Rdc,\min},$$
(1)

Коэффициент γ_c (частный коэффициент для бетона) применяется для перехода от характеристического значения сопротивления срезу $\tau_{Rk,c} = f(f_{ck})$ к его расчетному значению $\tau_{Rd,c}$. Следует отметить, что при выводе зависимости (1), авторами [9] был получен коэффициент равный 0,87. Если предположить, что переход к расчетному значению сопротивления $\tau_{Rd,c}$ эквивалентен применению в расчетной модели (1) расчетной прочности бетона (f_{ck} / γ_c), то характеристическое значение сопротивления срезу должно соответствовать 5 %-квантили.

Оценку надежности расчетных моделей сопротивления срезу производили по выборкам экспериментальных данных, которые имеют одинаковые параметры с варьируемыми значениями f_{cm}. Далее оценивается выборка из экспериментальных данных с близкими значениями fcm (выделенные экспериментальные значения напряжения среза на рис. 1). По методу порядковых статистик определяется значение напряжения среза соответствующая 5 %-квантили с заданной обеспеченностью. Экспериментальные значения напряжения среза в 5 %-квантили сопоставляются с функцией зависимости $\tau_{Rc.theo} = f(f_{ck})$ исследуемой расчетной модели (см. рис. 1). Модель сопротивления срезу будет считаться условно точной с назначеннеопределенности, ным уровнем если отношение $\tau_{Rc,theo} / \tau_{Rc,exp,5\%-\kappa_{\theta}} \simeq 1,0$. В противном случае, модель корректируют изменением значения коэффициента до тех пор, пока модель не будет соответствовать принятому критерию.

Рис. 1. Оценка надежности модели сопротивления срезу

Сложность данного метода заключается в трудности подбора экспериментальных данных с одинаковыми параметрами и варьируемыми значениями f_{cm} . На рис. 2–4 представлены графики оценки моделей сопротивления срезу, представленные в ТКП EN 1992-1-1:2009, prEN 1992-1-1:2018 и *fib* Model Code 2010 (LoA II), для балочных элементов, испытанных сосредоточенными и равномернораспределенной нагрузками.

Результаты оценивания надежности моделей сопротивления срезу по изложенной методике для различных видов нагружения, представлены в табл. 5–13.

Рис. 2. Оценки различных моделей сопротивления срезу при $a/d \ge 2,0$

Рис. 3. Оценки различных моделей сопротивления срезу при a/d < 2,0

Рис. 4. Оценки различных моделей сопротивления срезу (равномерно-распределенная нагрузка)

Таблица 5

Результаты оценивания надежности модели сопротивления срезу, представленной в ТКП EN 1992-1-1:2009, при $a/d \ge 2,0$

Doorrowrog	Вальируемый	Значение	Зизнение обес-	5 % -кв	τ	Отношения	
молель	параметр о	f_{ck} ,	леченности У	τ. MPa	theo,	$\tau_{theo} / \tau_{test}$ для	
модель	impunierp, p _l	МΠа		viest, 111 u	MPa	5 %-кв. т _{test}	
EN 1992-		111	$\gamma = 0,5$	0,71	0.68	0,96	
1-1:2009	0 = 0.79%	11,1	$\gamma = 0,75$	0,66	0,08	1,04	
	$p_l = 0, 77, 70$	183	$\gamma = 0,5$	0,73	0.81	1,12	
		10,5	$\gamma = 0,75$	0,61	0,01	1,34	
	0 = 10%	20.8	$\gamma = 0,5$	0,71	0.59	0,84	
	$p_l = 1,0.70$	27,0	$\gamma = 0,75$	0,65	0,57	0,92	
			21	$\gamma = 0,5$	0,86	1.00	1,26
		21	$\gamma = 0,75$	0,67	1,07	1,62	
	0 = 1.85%	26.7	$\gamma = 0,5$	0,70	1 18	1,69	
	p/ 1,00 / 0	20,7	$\gamma = 0,75$	0,57	1,10	2,09	
		157	$\gamma = 0,5$	1,27	1 /1	1,11	
		+3,7	$\gamma = 0,75$	1,20	1,41	1,17	
		22.4	$\gamma = 0,5$	1,17	1 22	1,04	
		22,7	$\gamma = 0,75$	1,16	1,22	1,05	
	$\rho_l = 2,1\%$	12.2	$\gamma = 0,5$	1,29	1 51	1,17	
		$p_l = 2, 1/0$ 42,2	$\gamma = 0,75$	1,21	1,51	1,24	
		59.6	$\gamma = 0,5$	1,23	1 60	1,38	
		57,0	$\gamma = 0,75$	0,97	1,09	1,74	

Результаты оценивания надежности модели сопротивления срезу, представленной в ТКП ЕN 1992-1-1:2009, при *a*/*d* < 2,0

Расчетная модель	Варьируемый параметр, р ₁	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, ү	5 %-кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 %-кв. τ_{test}
EN 1992- 1-1: 2009	$\rho_l = 0,77 \%$	16,5	$\gamma = 0,5$ $\gamma = 0,75$	1,94 1,54	0,75	0,38 0,48
	$\rho_l = 1,18\%$	17,3	$\gamma = 0.5$ $\gamma = 0.75$	2,43 2,02	0,87	0,36 0,43
	$\rho_l = 1,86 \%$	16,8	$\gamma = 0,5$ $\gamma = 0,75$	3,09 2,81	0,97	0,31 0,34

Таблица 7

Результаты оценивания надежности модели сопротивления срезу, представленной в ТКП EN 1992-1-1:2009, при равномерно распределенной нагрузке

Расчетная модель	Варьируемый параметр, р ₁	Значение f_{ck} , МПа	Значение обес- печенности, γ	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения τ _{theo} / τ _{test} для 5% -кв. τ _{test}			
		Γ	Три L / d < 10,0						
EN 1992-		12.7	$\gamma = 0,5$	1,63	0.07	0,59			
1-1:2009	$\alpha = 2.04\%$	12,7	$\gamma = 0,75$	1,19	0,97	0,81			
	p _l = 2,04 70	20.3	$\gamma = 0,5$	2,82	1 1 2	0,40			
		20,3	$\gamma = 0,75$	2,66	1,15	0,43			
	При <i>L / d</i> ≥10,0								
EN 1992-		12.5	$\gamma = 0,5$	0,37	0.43	1,15			
1-1:2009	0 - 0.4%	13,5	$\gamma = 0,75$	0,20	0,43	2,14			
	$p_l = 0, + 70$	20	$\gamma = 0,5$	0,33	0.40	1,48			
		20	$\gamma = 0,75$	0,27	0,49	1,78			

Результаты оценивания надежности модели сопротивления с	резу,
представленной в prEN 1992-1-1:2018, при $a/d \ge 2,0$	

Расчетная	Варьируемый	Значение <i>f_{ck}</i> ,	Значение обес-	5 % -κв. τ _{test} ,	$\tau_{theo},$	Отношения $\tau_{theo} / \tau_{test}$ для		
модель	mapamerp, p_l	МΠа	печенности, ү	MPa	МРа	5 % -кв. т _{test}		
prEN		11.1	$\gamma = 0,5$	0,71	0.56	0,79		
1992-1-1:	0 = 0.79%	11,1	$\gamma = 0,75$	0,66	0,50	0,85		
2018	$P_l = 0, 79 70$	183	$\gamma = 0,5$	0,73	0.66	0,90		
		10,5	$\gamma = 0,75$	0,61	0,00	1,08		
	0 = 10%	20.8	$\gamma = 0,5$	0,71	0.50	0,83		
	$p_l = 1,0.70$	$p_l = 1,0$ /0	29,0	$\gamma = 0,75$	0,65	0,39	0,91	
				21	$\gamma = 0,5$	0,86	0.00	1,02
		21	$\gamma = 0,75$	0,67	0,00	1,31		
	0 - 185%	267	$\gamma = 0.5$	0,70	0.05	1,36		
	p _l = 1,05 70	20,7	$\gamma = 0,75$	0,57	0,95	1,67		
		15 7	$\gamma = 0.5$	1,27	1 1 4	0,90		
		43,7	$\gamma = 0,75$	1,20	1,14	0,95		
		22.4	$\gamma = 0.5$	1,17	1.01	0,86		
	$\rho_l = 2,1\%$	22,4	$\gamma = 0,75$	1,16	1,01	0,87		
		$\rho_l = 2,1\%$ 42,2	$\gamma = 0.5$	1,29	1.24	0,96		
			$\gamma = 0,75$	1,21	1,24	1,03		
		50.6	$\gamma = 0.5$	1,23	1 20	1,13		
		59,0	$\gamma = 0,75$	0,97	1,39	1,43		

Таблица 9

Результаты оценивания надежности модели сопротивления срезу, представленной в prEN 1992-1-1:2018, при *a*/*d* < 2,0

Расчетная модель	Варьируемый параметр, р ₁	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, ү	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 % -кв. τ_{test}
prEN 1992-1-1:	$\rho_l = 0,77 \%$	16,5	$\frac{\gamma = 0,5}{\gamma = 0,75}$	1,94 1,54	0,60	0,31 0,39
2018	$\rho_l = 1,18\%$	17,3	$\gamma = 0,5$ $\gamma = 0,75$	2,43 2,02	0,70	0,29 0,35
	$\rho_l = 1,86 \%$	16,8	$\gamma = 0,5$ $\gamma = 0,75$	3,09 2,81	0,76	0,25 0,27

Результаты оценивания надежности модели сопротивления срезу, представленной в prEN 1992-1-1:2018, при равномерно распределенной нагрузке

Расчетная модель	Варьируемый параметр, р ₁	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, ү	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 % -кв. τ_{test}
		Ι	Три <i>L / d <</i> 10,0			
prEN 1992-1-1:	2.04.9/	12,7	$\begin{array}{c} \gamma = 0,5\\ \gamma = 0,75 \end{array}$	1,63 1,19	0,78	0,48 0,66
2018	$p_l = 2,04\%$	20,3	$\gamma = 0.5$ $\gamma = 0.75$	2,82 2,66	0,92	0,33 0,35
		I	Три <i>L / d</i> ≥10,0	,		
prEN 1992-1-1:	a = 0.4%	13,5	$\gamma = 0,5$ $\gamma = 0,75$	0,37 0,20	0,27	0,73 1,35
2018	$p_l = 0,4 / 0$	20	$\gamma = 0,5$ $\gamma = 0,75$	0,33 0,27	0,30	0,91 1,11

Таблица 11

Результаты оценивания надежности модели сопротивления срезу, представленной в fib MC 2010 (LoA II), при $a/d \ge 2,0$

Расчетная модель	Варьируемый параметр, р ₁	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, ү	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 % -кв. τ_{test}
<i>fib</i> MC 2010	$ \rho_l = 0,79 \% $	11,1	$\gamma = 0,5$ $\gamma = 0,75$	0,71 0,66	0,56	0,79 0,85
(LoA II)		18,3	$\gamma = 0,5$ $\gamma = 0,75$	0,73 0,61	0,66	0,90 1,08
	$\rho_l = 1,0\%$	29,8	$\gamma = 0,5$ $\gamma = 0,75$	0,71 0,65	0,64	0,90 0,99
	$\rho_l = 1,85\%$	21	$\gamma = 0.5$ $\gamma = 0.75$	0,86 0,67	0,84	0,98 1,25
		45,7	$\gamma = 0.5$ $\gamma = 0.75$	1,27 1,20	1,09	0,86 0,91
	$\rho_l = 2,1\%$	22,4	$\gamma = 0.5$ $\gamma = 0.75$	1,17 1,16	0,95	0,81 0,82
		59,6	$\gamma = 0,5$ $\gamma = 0,75$	1,23 0,97	1,32	1,07 1,36

Таблица 12

Результаты оценивания надежности модели сопротивления срезу, представленной в *fib* MC 2010 (LoA II), при *a*/*d* < 2,0

Расчетная модель	Варьируемый параметр, р ₁	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, γ	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 % -кв. τ_{test}
<i>fib</i> MC 2010	$\rho_l = 0,77 \%$	16,5	$\gamma = 0,5$ $\gamma = 0,75$	1,94 1,54	0,72	0,37 0,47
(LoA II)	$\rho_l = 1,18\%$	17,3	$\gamma = 0,5$ $\gamma = 0,75$	2,43 2,02	0,83	0,34 0,41
	$\rho_l = 1,86\%$	16,8	$\gamma = 0,5$ $\gamma = 0,75$	3,09 2,81	0,89	0,29 0,32

Таблица 13

Результаты оценивания надежности модели сопротивления срезу, представленной в *fib* MC 2010 (LoA II), при равномерно распределенной нагрузке

Расчетная модель	Варьируемый параметр, ρ _l	Значение <i>f_{ck}</i> , МПа	Значение обес- печенности, γ	5 % -кв. т _{test} , MPa	τ _{theo} , MPa	Отношения $\tau_{theo} / \tau_{test}$ для 5 % -кв. τ_{test}	
При L/d <10,0							
<i>fib</i> MC 2010 (LoA II)	$\rho_l = 2,04 \%$	12,7	$\gamma = 0,5$	1,63	0,92	0,56	
			$\gamma = 0,75$	1,19		0,77	
		20,3	$\gamma = 0,5$	2,82	1,11	0,39	
			$\gamma = 0,75$	2,66		0,42	
При L / d ≥10,0							
<i>fib</i> MC 2010 (LoA II)	$ \rho_l = 0,4\% $	13,5	$\gamma = 0,5$	0,37	0,36	0,97	
			$\gamma = 0,75$	0,20		1,8	
		20	$\gamma = 0,5$	0,33	0,42	1,27	
			$\gamma = 0,75$	0,27		1,56	

Заключение. Исходя из результатов оценивания надежности расчетных моделей сопротивления срезу, представленные в данной работе, можно сделать следующие выводы:

1. Одной из ключевых особенностей, влияющей на точность оценивание надежности расчетных моделей, является необходимость обоснованного выбора функции распределения вероятностей по полученной эмпирической выборке. Из-за получения несимметричного распределения, возникают трудности в вычислении, соответствующим образом, 5 %-квантили.

2. Так как в большинстве расчетных моделей переход от характеристического значения прочности бетона при срезе $\sqrt{f_{ck}}$, выполняется путем деления на частный коэффициент $\gamma_c = 1,5$, то методологически было бы правильно, чтобы отношение теоретического и опытного сопротивления, соответствовало 5 %-квантили распределения, а не среднему значению.

3. С учетом вышеизложенных замечаний, было предложена собственная методика оценивания надежности моделей сопротивления срезу, основанная на методе порядковых статистик, которая не требует определения функции распределения вероятности и плотности, а также позволяет вычислить квантиль требуемого порядка для заданной обеспеченности.

Результаты оценивания надежности моделей по общепринятой и предложенной методиках, показывают, что практически ни одна из проанализированных моделей не дает в 5 %-квантили ожидаемого отношения $V_{theo} / V_{test} \approx 1,0$. Наиболее близкие к единице значения отношения V_{theo} / V_{test} дают рассмотренные расчетные модели для гибких балок ($L/d \ge 10$), загруженных равномерно-распределенной нагрузкой и с большим пролетом среза $a/d \ge 2,0$, загруженные сосредоточенной нагрузкой. Для жестких балок (a/d < 2,0 и L/d < 10) все исследуемые модели дают довольно существенный запас. Опираясь на полученные результаты, возникает вопрос о применимости данных моделей к требуемому уровню надежности, что в свою очередь требует дополнительного анализа.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Еврокод 2. Проектирование железобетонных конструкций. Часть 1–1. Общие правила и правила для зданий = Еўракод 2. Праектаванне жалезабетонных канструкцый. Частка 1–1. Агульныя правілы і правілы для будынкаў: ТКП ЕN 1992-1-1-2009 (02250). – Введ. 10.12.09. – Минск: Стройтехнорм, 2010. – 207 с.

2. Дереченник, С. С. Новый подход к оцениванию in-situ характеристической прочности бетона в существующих железобетонных конструкциях при ограниченном количестве результатов полевых испытаний / С. С. Дереченник, В. В. Тур // Вестник Брестского государственного технического университета. Строительство и архитектура. – 2018. – № 1. – С. 109–115.

3. Тур, В. В. Влияние размерного эффекта на сопротивление срезу балочных элементов без поперечного армирования / В. В. Тур, А. П. Воробей // Строительство и реконструкция. Орловский гос. ун-т им. И. С. Тургенева. – 2019. – № 2. – С. 43–60.

4. Дереченник, С. С. Новый метод оценивания in-situ характеристической прочности бетона с учетом надежности существующих железобетонных конструкций / С. С. Дереченник, В. В. Тур // Перспективные направления инновационного развития строительства и подготовки инженерных кадров: сборник научных статей XXI Международного научно-методического семинара, Брест, 25– 26 октября: в 2 частях / Министерство образования Республики Беларусь, Брестский государственный технический университет, Строительный факультет; редкол.: В. В. Тур [и др.]. – Брест: БрГТУ, – 2018. Часть 2. – С. 23–38.

5. *fib* Model Code for Concrete Structures 2010. – Ernst and Sohn, 2013. – Pp. 389.

6. European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General rules, rules for buildings, bridges and civil engineering structures. Draft for committee works, April 2018, p. 293.

7. Тур, В. В. Новые подходы к определению сопротивления срезу балочных элементов без поперечного армирования: Часть 1 – Обзор расчетных моделей / В. В. Тур, А. П. Воробей // Вестник Брестского государственного технического университета. Строительство и архитектура. – 2019. – № 1. – С. 15–22.

8. Тур, В. В. Новые подходы к определению сопротивления срезу балочных элементов без поперечного армирования: Часть 2 – Верификация расчетных моделей / В. В. Тур, А. П. Воробей // Вестник Брестского государственного технического университета. Строительство и архитектура. – 2019. – № 1. – С. 23–30.

9. Cavagnis, F., Fernández Ruiz, M., Muttoni, A. A mechanical model for failures in shear of members without transverse reinforcement based on development of a critical shear crack, submitted for publication in Engineering Structures / F. Cavagnis, M. Fernández Ruiz, A. Muttoni // Engineering Structures. – 2017. 10. Тур, В. В. Новое в проектировании конструкций из бетона: второе поколение Еврокодов и Национальных норм / В. В. Тур, Т. М. Пецольд // Вестник Полоцкого государственного университета. Строительство. Прикладные науки. Строительные конструкции. – 2018. – № 8. – С. 131–146.

11. Ignatiadis, A. Eurocode 2 – analysis of National Annex / A. Ignatiadis [et al.] // Structural Concrete. – $2015. - N_{2} 1$.

УДК 691.328.43

АНАЛИЗ МЕТОДИК РАСЧЕТА ПРОГИБОВ ИЗГИБАЕМЫХ БЕТОННЫХ КОНСТРУКЦИЙ СО СТЕКЛОПЛАСТИКОВОЙ АРМАТУРОЙ

ХОТЬКО А. А., АКБАР С. М. Белорусский национальный технический университет Минск, Беларусь

С учетом специфических особенностей стеклопластиковой арматуры, внедрение ее в производство несущих конструкций невозможно без соответствующих научных обоснований, основанных на имеющихся теоретических предпосылках и выполненных экспериментальных исследованиях.

Известным ученым Фроловым Н. П. было логически обоснована нецелесообразность армирования изгибаемых элементов стеклопластиковой арматурой без ее предварительного напряжения [5]. Многочисленные экспериментальные исследования подтверждали значительные прогибы и ширину раскрытия трещин конструкций армированных стеклопластиковой арматурой по сравнению с аналогичными конструкциями со стальной арматурой. Поэтому использование всех преимуществ композитной арматуры при армировании изгибаемых элементов возможно только при условии ее предварительного напряжения, способного повысить трещиностойкость и уменьшить прогибы конструкций при эксплуатационных нагрузках.

Однако, даже при условии решения проблемы со сложностью создания предварительного напряжения композитной арматуры, является актуальным вопрос достоверной расчетной оценки шири-